

Penn State University Ice Hockey Arena

lightsout DESIGN

BIM/IPD Thesis FINAL REPORT

Prof. Kevin Parfitt

Prof. Robert Holland

advisors:

Dr. Andres Lepage

Prof. Moses Ling

Dr. Richard Mistrick

Dr. John Messner

nate babyak | alex schreffler | brian sampson

Table of Contents

Acknowledgements	∠
Executive Summary	5
Project Background	ε
Construction Management	7
Existing Structural	8
Existing Mechanical	11
Existing Lighting	13
Existing Electrical	14
Main Roof Redesign	15
Long Span Roof Research	15
Simple Suspended Cables	15
Double Curvature Design	17
Cable-Stayed Roof	18
ASCE 19-10: Structural Applications of Steel Cables for Buildings	19
Cable Manufacturer	19
Shape Selection	20
Structural Design of the Roof	22
Thermal Analysis of the Roof	29
BIM Modeling of Cable-Stayed System	31
Gravity Model of Structural System	32
Lateral Analysis of Structural System	33
Architectural Impacts of New Structural System	32
Mast Erection Process	39
Crane Selection	42
Crane/Equipment Comparison	44
Steel Takeoffs and Cost	46
Steel Erection Sequence	48
Main Roof Redesign Conclusion	51
Façade Redesign	52
Thermal Analysis of the Façade	53
Façade Takeoff and Cost Estimates	55
Façade Redesign Conclusion	58

BIM Thesis Final Report

PSU Ice Hockey Arena

Community Rink Roof Redesign and Mechanical Loft Design	59
Community Rink Roof Design	59
Mechanical Loft Structural Design	61
Mechanical System Redesign	62
Mechanical Redesign Cost Estimate	71
Shaft Coordination	72
Piping Model	74
Electrical Design	75
Mechanical Loft Shaft Coordination	78
Main Concourse Plenum Coordination	79
Navisworks Coordination	82
Mechanical Loft Architectural Impact	84
Community Rink Roof Redesign and Mechanical Loft Design Conclusion	85
Conclusion	87
Structural Appendix	88
Appendix A. Structural MAE Requirements	89
Appendix B. Structural Loads	90
Snow Load Check	91
Wind Loads	93
Seismic Calcs	100
Appendix C. Roof Design	103
Cable Design	109
Composite Column Design	114
Appendix D. Gravity System	121
Appendix E. Façade Mullion Design	124
Appendix F. Community Rink Roof Design	126
Appendix G. Structural References	132
Mechanical Appendix	134
Appendix H. Mechanical MAE Requirements	135
Appendix I. Redesign Floor Plans	136
Event Level Ductwork Plan	136
Concourse Level Ductwork Plan	136
Club Level Ductwork Plan	137
Catwalk Level Ductwork Plan	137
Event Level Piping Plan	138
Page 1.2	

BIM Thesis Final Report

PSU Ice Hockey Arena

Concourse Level Piping Plan	138
Club Level Piping Plan	139
Mechanical Room Detail	139
Appendix J. Trane Trace AHU System Checksums	140
Appendix K. Façade Life-Cycle Cost Analysis Energy Consumption Reports	151
Baseline Brick	151
Baseline Metal Panels	152
50% Glass	153
60% Glass	154
70% Glass	155
80% Glass	156
90% Glass	157
Appendix L. Life-Cycle Cost Analysis Spreadsheet Example	158
Appendix M. AHU Room CFM Table Example	159
Appendix N. Mechanical System Schematic	160
Dehumidification Unit Control Diagram	160
VAV AHU Diagram	161
Trane Trace System Schematic	161
Appendix O. Mechanical References	162
Construction Appendix	163
Appendix P. Crane Load Charts	163
Appendix Q. Existing and Redesigned Ductwork Lengths, Pressure Drops, Cost	165
Appendix R. Redesign Schedule	169
Appendix S. Construction References	175

1

Acknowledgements

This capstone project was a challenging academic experience and has provided Lights-Out Design with a great real world design team experience. We are thankful to have been a part of the IPD/BIM Thesis program and would like to express our gratitude to all of those who have supported our efforts throughout the year:

The Thornton Tomasetti Foundation Crawford Architects

The Leonhard Center Penn State Bohlin Cywinski Jackson

Faculty Advisors Thornton Tomasetti

Professor Robert Holland
Professor Kevin Parfitt
Professor Moses Ling

Moore Engineers

Professor Andres Lepage Mortenson Construction
Professor John Messner

Professor Richard Mistrick Cannon Design
Professor Ronald Dodson

Dr. Louis Geschwindner Corey Wilkinson

John Jackson

BR+A Consulting Engineers

Michael Gilroy

Alyson Larimer
Penn State AE Students

Brian Nahas iBuild IPD/BIM Team

HPR Integrated Design IPD/BIM Team

Family and Friends

Ryan Solnosky

Executive Summary

Lights-Out Design is pleased to present the team's year-long senior capstone thesis project for AE482. Over the course of the year, the team has collaboratively assessed the current Penn State Ice Hockey Arena design and targeted areas where the team could explore design enhancements through integrated project deliver and building information modeling platforms. The Lights-Out Design team consists of a student from each discipline within Architectural Engineering at Penn State. Each discipline came into the IPD/BIM thesis with sufficient background in building information modeling programs. Together, Lights-Out Design has analyzed engineering systems of the Penn State Ice Hockey Arena using BIM software in an IPD environment. Specifically, the team made efforts to analyze and redesign the long span roof, the exterior facade, and to analyze and redesign the existing mechanical system to improve energy efficiency.

The existing arena roof consists of long span steel trusses that span 192 feet over the arena bowl with 30 foot steel joists above the north and south concourses. From an early design stage, Lights-Out Design wanted to investigate the possibility of spanning the arena roof the entire 252 feet from exterior wall to exterior wall. In order to accomplish this, a unique system would be necessary. A cable-stayed solution was selected after careful investigation into other cable structures. Throughout the semester, a cable-stayed roof was designed and compared to the existing design. The new roof proved to be very expensive and significant changes would be necessary to improve the feasibility of the cable-stayed roof.

After deciding to design a cable structure, it became necessary to redesign the existing façade. The existing façade consisted of mainly a brick veneer with slotted windows along the north and south concourse. With the teams new design goal, the façade was redesigned to be lighter through the use of glass and metal panels. A thermal analysis was conducted on the new façade to ensure that the arena would remain energy efficient. After conducting the analysis, it was discovered that the move to glass and metal panels would not impact the energy efficiency of the arena and would only cost \$85,701 over the life-cycle of the arena, a mere \$3,000 extra per year for 30 years. A new lighter façade is clearly feasible for the arena.

The final major redesign revolved around the community rink roof and the energy efficiency of the mechanical system. With the community rink being used extensively throughout the year, Lights-Out Design wanted to provide a greater aesthetic to the rink through an arched roof and infusing daylighting. In turn, after a preliminary analysis of the mechanical system, the team concluded that mechanical units had to be relocated. Through moving mechanical units to a mechanical loft, the team was able to save close to a million dollars in duct expenses and create flexibility in the design of the community rink roof. This redesign posed major coordination challenges to Lights-Out Design and provided a great opportunity to implement numerous BIM programs to ensure coordination between the engineering systems.

Through each phase of analysis and design, communications between team members and model sharing software needed continuous input. Lights-Out Design chose to continue use of Revit analytical models provided by the design team and share information across a spectrum of BIM software.

Project Background

The Penn State Ice Arena is an approximately 216, 240 square foot arena that will house two ice sheets, a 6,000 seat main arena, a 300 seat community rink, food and retail facilities, offices for the NCAA Division 1 men's and women's hockey teams, and other team facilities. The project is owned by The Pennsylvania State University and is located on the University Park campus just south of the intersection of Curtin Road and University Drive. The arena neighbors the Shields Buildings to its north, the Tennis Facility to the southwest, and Holuba Hall to the south. The main goal of the arena is to provide a championship quality facility for the new hockey teams.

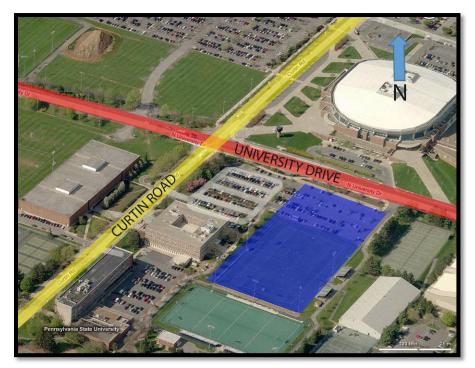


Figure 1. Site Plan of the Penn State Ice Arena (Image from Bing.com)

There are three occupiable floors of the arena. The base level is the Event Level at an elevation of 1156'-1" above sea level. The second level is the Main Concourse Level at 1176'-10" above sea level and the third level is the Club Level, which sits 1206'-1" above sea level. Because the site slopes approximately 21' from the north side of the arena to the south side of the arena, the two main entrances to the main arena occurs at the Main Concourse Level, where entry to community rink on the south of the arena occurs at the Event Level (See Appendix F for selected architectural drawings).

The Event Level houses the community rink which requires locker rooms, skate rentals, and concessions. Both the ice making system and ice supplies are located in the northwest corner of the Event Level providing direct access to both ice sheets. On the north side of the entry level are the division 1 home locker rooms and team lounges, as well as physical therapy rooms. Along the east side of the Event Level, there are rooms for strength training and skill development. The loading dock for the arena is located in the southeast corner of the Event

Page | 6
babyak | sampson | schreffler

Level and provides direct access to the main ice sheet. The administrative facilities for the Division 1 hockey teams are located along the south side of the Event Level.

The Main Concourse level serves as the main entry to seating bowl of the main ice sheet. The two entrances are located in the northwest and northeast corners of the arena. In addition to providing direct access to the main seating bowl for patrons, the Main Concourse contains the concession stands, restrooms, and press box. A special banquet facility is located in the southeast corner and provides spectacular views of Mount Nittany.

The Club Level is accessed by a large open stairway in the lobby along the east side of the arena. The Club Level provides 12 suites along the north side of the arena with the potential of adding 12 future suites along the south side of the arena. The suites allow for a more relaxed area to watch games and events with direct access to food and drinks provided by a support staff. Again, there is a special gathering area in the southeast corner of the arena to provide views of Mount Nittany.



Figure 2. A 3D rendering of the Ice Arena's Main Entrance (Image adapted from Crawford Architects)

The façade of the Ice Arena reflects on the architectural style of Penn State University with a mix of traditional brick and glass. There is a large class curtain wall that spans the entire façade along University Drive providing a welcoming look into the Arena from the exterior. While the front east façade presents a large open feel, the north and south facades of the arena present a more closed anchored feeling of brick mixed with small glass accents. At the entry level of both the north and south façade, there is a 9' glass curtain wall. Above the entry level, there is a large brick façade with long 2' x 27' slot windows that light the outer concourses. The facades of the community rink are simple brick facades.

Construction Management

The Penn State Ice Arena has a hard completion date of August 2013 in order to be ready for the Penn State Hockey team's inaugural season in the Big Ten Conference. Funding for the project was attained by a donation of \$88 million from an alumnus. Roughly \$77 million has been set aside for the initial cost of the arena. Mortenson Construction has been named the Construction Manager for the project, and the rest of the project is still in the process of accepting bids for work.

The project site itself is located to the immediate west of University Drive and directly to the south of Shields Building, in the northeast corner of campus. The University's athletic

Page | 7
babyak | sampson | schreffler

facilities are in the surrounding vicinity, with the field hockey fields to the arena's west, the football practice facilities to its south, and the Bryce Jordan Center and Multi Sport Facility to its east. Because of its location on campus, the project will encounter challenges in site logistics as it must not obstruct and must protect pedestrian traffic on the surrounding sidewalks and vehicular traffic on adjacent University Drive. For the size of the arena's footprint, the job site is limited and therefore, logistics will be a concern as there will not be enough room on site for equipment and material storage if not managed carefully. Another constraint of the site is the major utilities duct bank that runs west to east across the north edge of the job site. Work must not damage the duct bank in any way as it is the source of electricity, heat, and plumbing for a huge portion of the University's campus. An additional restriction for the job site is the soil and rock content of the site, which the geological survey reports contains pinnacle rock very close to the surface, which will likely require blasting for deep excavation.

Existing Structural

Foundation

The foundation of the Penn State Ice Arena is a combination of spread footings, strip footings, and micropiles. To combat the slope of the site, foundation walls exist on the North, East, and West sides of the building. Supporting the foundation walls are strip footings ranging from 1'-6" deep to 2' deep. On the South side of the arena, grade beams connect the spread footings underneath the exterior columns. In a designated area, micropiles are used instead of spread footings due to the pinnacled nature of the rock on the site of the arena (See Figure 3). Where pile caps were necessary, steel pipe piles ranging in diameter from 5 ½" to 9 ¾" extend through the soil allowing friction to carry the load of the building. The geotechnical report suggested spread footers for columns that carry a load of less than 150 kips, micropiles w/ 5 ½" steel pipes for columns that carry less than 350 kips, and micropiles w/ 7" or 9 ¾" steel pipes where the load was greater than 350 kips.

The slab on grade has some special considerations due to the ice surface needed for both the community and main ice rink. Underneath the two ice surfaces, there is a 6" slab on grade with a 4" thermal barrier and a 10" sand base. It is imperative that the slab under the ice rinks be thermally isolated to prevent frost heave and thaw weakening. This ensures that the ice surface remains flat and uncompromised. The rest of the building has a 6" slab on grade with less strict thermal isolations. The 28 day compressive strength required for formed concrete slabs and beams is 5,000 psi. All other concrete elements require a 28 day compressive strength of 4,000 psi.

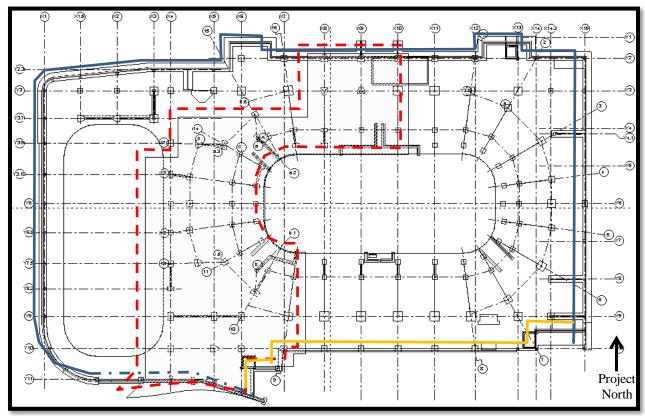
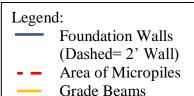



Figure 3. Layout of Foundation System (Plans Courtesy of Thornton Tomasetti)

Floor System

The Main Concourse Level and the Club Level are supported by a one way composite steel beam system with varying bay sizes due to the oval seating of the main bowl. The most typical bay size is 32' x 28' along the long sides of the main bowl. The floor deck consists of 3" 18 gauge metal deck with 4 ½" normal weight concrete topping. The floor deck of the typical bay is supported by W24 girders and W18 beams that frame into exterior W14 and interior W24 columns. The main seating bowl consists of precast concrete seating supported by W30 rakers which frame into the W24 columns at the Main Concourse Level.

Roof System

The most difficult part of a long span structure is how to span the long distance required between supports. A 196' steel truss spans the roof over the main seating bowl and main ice rink. The truss consists of W14s for both the top and bottom chord with double angles for web members. There are also vertical W14 members at certain panel points. The top chord of the truss is sloped slightly as the truss is 10' thick at the ends and 12'-6" thick at its center. The truss system supports a center scoreboard, rigging loads, and catwalk, in addition to the roof deck. The roof deck consists of 3" 18 gauge metal deck type N with a built-up membrane roofing

			Page 9		
babya	k	l	sampson	ı	schreffler

material. The bottom chord of the truss sits 50'-0" above the floor of the arena. The overall max height of the high roof is 65'-0" from the top of the roofing material to the Entry Level slab.

The roofs of the surrounding parts of the buildings are supported by steel joists or conventional steel framing. The roof over the Club Level concourse sits approximately 6' below the high roof supported by the roof trusses. The Club Level roof is supported by 24K8 steel joists. The roof over the lobby area along University Drive slopes slightly up and is supported by taper W30x90s and custom 36LH long span joists. The roof over the student section on the west side of the main bowl is supported by W14s and sits approximately 8'-6" below the high roof. Both the lobby roof and the roof above the student section frame into their respective end steel truss. The roof over the community rink consists of 68DLH16 long span steel joists leaving a clear height of approximately 32'-6" between the bottom chord and the ice slab.

Lateral System

To resist the governing lateral loads caused by wind, the arena relies on a combination of concrete shear walls, braced frames, and moment frames. Shear walls are located on the entry level and extend from the slab on grade to the Main Concourse Level (See Figure 4 for location of shear walls). Because it is necessary to have large open concourse areas, moment frames are used along the concourse corridors. Braced frames are used in the walls behind the student section and extend from the Main Concourse Level to the roof (See Figure 5 for location of frames). There are also braced frames located on the edge of the upper roof that is spanned by the large roof trusses. The steel trusses also aide in the lateral resistance.

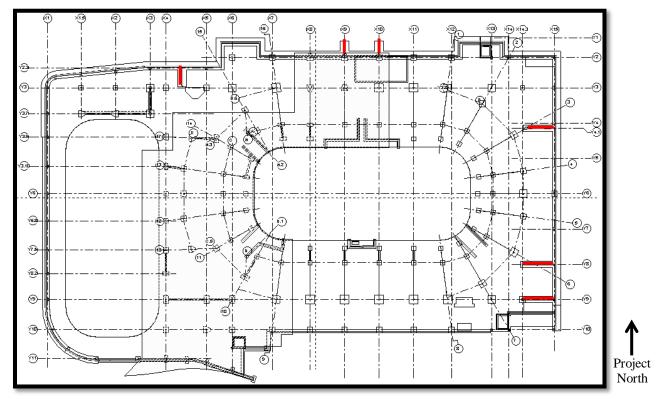


Figure 4. The red lines designate the location of shear walls at the Event Level (Plans Courtesy of Thornton Tomasetti)

Page | 10
babyak | sampson | schreffler

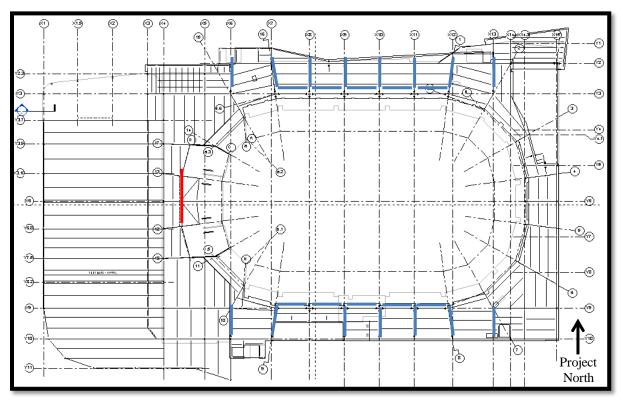


Figure 5. Schematic location of the moment frames and braced frames at the Club Level

(Plans Courtesy of Thornton Tomasetti)

Legend:

Braced Frame

Moment Frame

Existing Mechanical

The Pegula Ice Arena brings in chilled water and steam from the main campus plant through the mechanical room adjacent to the community rink. Chilled water is distributed by two 770 gpm chilled water pumps. The 150 psi high pressure steam is converted to low pressure steam at a pressure reducing station. Two heat exchangers transfer heat from the low pressure steam to the domestic hot water supply system. Two 230 gpm hot water pumps distribute hot water to the building loads.

The arena heating and cooling loads are met by 5 VAV air handling units, 5 dehumidification units, and 4 energy recovery units. All AHUs are located on the roof between the main arena and community ice rink (See figures 6-8 for AHU/Zones). Suite boxes, mechanical rooms, electrical rooms, concessions, and tel/data rooms are serviced by fan coil units. Electric radiant heaters are located above the stands in the community rink.

On site ammonia chillers are utilized for ice making. There are three screw compressors and one reciprocating compressor. There are also two evaporative condenser towers and three plate and frame evaporators to transfer heat from the glycol to the ammonia refrigerant. Glycol is distributed through concrete slabs under the ice.

The main arena is serviced by two 45,000 CFM VAV AHUs. Outdoor air is sent through an enthalpy wheel and then mixed with return air. The mixed airstream is then sent through a pre-cooling coil to remove humidity and then through a gas fired desiccant wheel for further humidity control. Both units are located on the roof between the main arena and community rink. A single duct from each unit runs the entire length of the arena over the stands on each side.

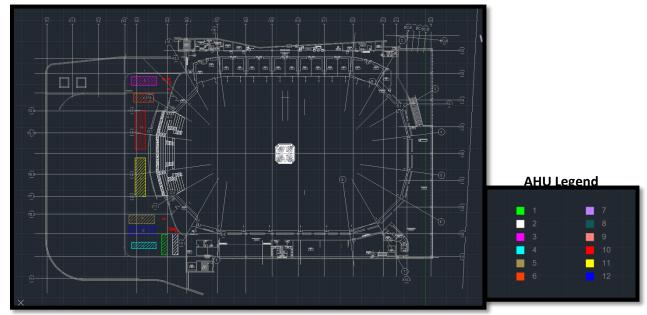


Figure 6. Existing Location of AHUs

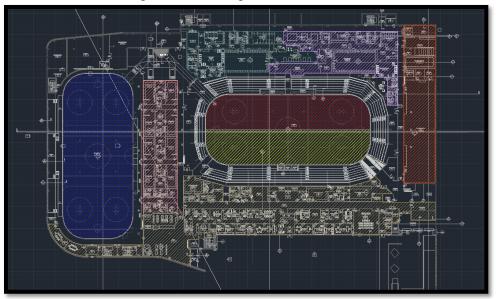


Figure 7. Event Level AHU Zone Diagram

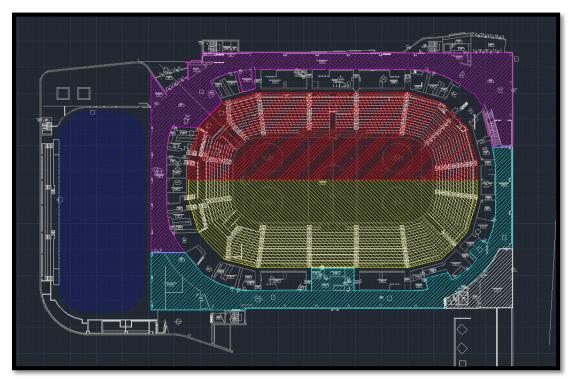


Figure 8. Concourse Level AHU Zone Diagram

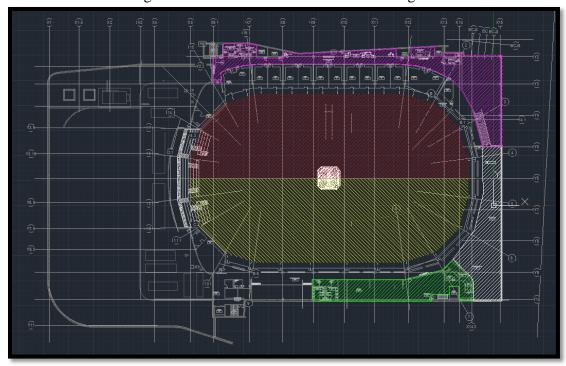


Figure 9. Club Level AHU Zone Diagram

Existing Lighting

The only spaces where existing lighting was provided (as of July 8, 2011) were the exterior site lighting, main arena and community rink. The exterior lighting utilizes "Penn State

Page | 13
babyak | sampson | schreffler

standard" 250W high pressure sodium path lighting fixtures. These fixtures are mounted on 12' poles with the exception of the fixtures located in the south western parking lot, which are mounted at 25' above the ground. The lighting for the main arena is provided by eighty-four metal halide fixtures with wattages unspecified. These fixtures provide the necessary illuminance levels for NCAA Division 1 hockey and also the broadcasting requirements. The community rink is lit with 2x4 fluorescent fixtures most likely coupled with T8 or T5 lamps. Using fluorescent fixtures greatly decreases the lighting power consumption within the community rink and the building as a whole while still achieving necessary illuminance requirements.

Existing Electrical

The electrical system currently feeding the Ice Hockey Arena is a 12.47kV service through two oil filled 2500kVA service transformers feeding two 3000A main-tie-main switchgears. Distribution begins with the 12.47kV service being stepped down to 480Y/277V to supply equipment and motor loads, then stepped down further at various locations to 208Y/120V service to supply receptacle, lighting and other loads such as sound systems for the two sheets of ice. Emergency power is supplied by a 4160kV service fed through an oil filled 150kVA service transformer 4160kV service is stepped down to 480Y/277V when then feeds an automatic transfer switch with both normal and emergency power. Standby power is fed from one of the two 3000A switchgears, which then feeds an automatic transfer switch with both normal and emergency power.

schreffler

Main Roof Redesign

In any large arena, a large focus is placed on how to support the roof and provide clear open spaces for spectators. The design team's solution was to span 192 feet of the Main Arena with a steel truss and use steel joists to span the 30 feet above both the North and South Concourse. This creates an efficient steel design that minimizes impact on architectural views and keeps construction costs to a minimum. However, the roof design does not create an exciting exterior view that represents the thrilling hockey action that the arena contains within. This pushed the group Lights-Out Design to consider a new roof design with new goals.

As a group, Lights-Out Design took a "go big or go home" attitude. From a very early design stage, the decision to span the entire 252 foot span of the main arena. In addition, the bulky and deep steel trusses had to be removed and replaced with a design that would provide a sleeker and clean interior system. The last goal was to provide a much more exciting iconic roof design that would be forever synonymous with Penn State Hockey. To summarize, Lights-Out Design wanted to design a roof that spanned the entire arena, while reducing the structural depth and providing a more exciting outward appearance. This presented clear challenges in structural design and construction processes to both the Structural and Construction Management team members. Throughout the design, the Mechanical team member had to ensure that the roof design retained thermal properties necessary to maintain championship conditions inside the Main Arena.

Long Span Roof Research

In order to accomplish the team's goal, a significant amount of research was required to determine if the idea of a thinner roof spanning a large area would be possible. The most obvious structural solution revolved around cable roof structures because of their high strength to size ratio. A cable roof structure would provide both the thin roof and the long span, but the question was whether or not a cable roof structure would be appropriate for an ice arena. Several different design solutions were investigated and the following case studies illustrate how Lights-Out Design determined the roof solution for the Penn State Ice Arena.

Simple Suspended Cables

The simplest cable roof structure is the simple suspended cable. In this application, cable simply suspend in a catenary position across a long span and support the roof cladding above. One of the attractive features of the simple suspended cable roof is that the cables do not need to be pretensioned saving time and money. However, without pretensioning, the cables lack stiffness and considerable movement can occur under wind loading, known as flutter. To reduce flutter, heavy concrete is often chosen as the roofing material to be placed above the cables.

Typically, there are two ways to suspended cables in this manner. One is in a rectangular pattern, which can be seen at Dulles International Airport outside of Washington, D.C., and the other pattern is circular or elliptical with a tension ring in the center and a compression ring at

Page | 15
babyak | sampson | schreffler

the perimeter, like Oakland-Alameda Coliseum in Oakland, CA. Due to the rectangularity of the given architectural floor plan, Dulles Airport was investigated further to determine if this solution could be applied to the Penn State Ice Hockey Arena.

Figure 10. Nighttime View of the Terminal at Dulles International Airport

The terminal at Dulles International Airport was designed by Eero Saarinen in the early 1960s to provide a monumental building for growing jet airplane industry. Above, you can see the soaring buttresses spaced 40 feet apart with the simple cable system hanging in between. An important feature of the simply suspended cables is the span to sag ratio. The greater the sag in the cables the less horizontal thrust the cables place on the supports and more efficient the cables become. At Dulles, the front entry is 65 feet high at the front entry and 40 feet at the field side allowing for a sag of over 25 feet over the 164 span. This span to sag ratio helps minimize the thrust in the buttresses. The buttresses widen at the base to handle the large thrust and anchor under the terminal.

The single curvature cable design for the Penn State Ice Hockey Arena provided challenges mainly due to the significant sag that would be necessary to allow for a thrust that buttresses would be able to handle. Also, the scoreboard that would hang over the ice would result in extremely high exterior walls in order to produce the necessary sag. There was also concern that flutter caused by wind would be challenging with the single curvature design. Ultimately, a single curvature design was not utilized based on architectural and structural concerns.

Figure 11. Ingalls Rink at Yale University was another Cable Structure by Saarinen

Double Curvature Design

To overcome flutter concerns, the design turned to a double curvature cable design. The double curvature design acts as a cable truss and provides a much stiffer system than a single curvature design. Also, by adding an additional cable, the natural frequencies of the double cable system are much higher than a single curvature system resulting in reduced flutter. There are three possible shapes that are typical of the double curvature design: convex, concave, and convex-concave. Due to depth concerns at the center of the arena, the convex-concave option was investigated further to determine its feasibility. As a design team, the double curvature system was also intriguing do to its efficiency, ease of construction, and ability to fit multiple different roof shapes.

Figures 12 and 13. Exterior and Interior Views of the Jawerth Cable Truss at Hovet

Hovet, an ice arena, in Stockholm, Sweden was investigated for its use of a double curvature design. The roof supported by a Jawerth cable truss was added in 1962 to enclose the 8,000 seat arena. The arena's ability to deal with similar snow and wind conditions attracted the team to this case study. However, the exterior appearance of the arena and the necessity for awkward backstays led the team to a different design solution. The double curvature truss is

most definitely a cheap efficient cable solution, but the arena looks shed-like and not like an iconic image that Penn State Hockey wants.

Cable-Stayed Roof

The last structural cable system that was investigated was the cable-stayed roof. A cable-stayed system is typically made up of multiple parts. First, there is a girder on which secondary roof beams connect and the roof cladding sit on. A mast extends upward on the exterior of the span and cables extend from the mast to the girders to support the roof below. To resist the tension in the cables, a backstay system is typically provided to keep the cable-stay system from falling inwards. The cable-stayed system provided several advantages including: a regular system, concentrated foundations, and a strong visual identity. However, immediate concerns developed around how to build such a system and the thermal breaks that would occur at cable-to-girder connections.

Several arenas and cable-stayed roofs were investigated, but, ultimately, the Ratner Center by Caesar Pelli and Associates at the University of Chicago was selected as our precedent case study. The Ratner Center was built to house a competition sized gymnasium as well as an Olympic-sized natatorium which relates well to the ice hockey arena at Penn State. The cable-stayed system allows free spaces of 160 x 125 feet in the gymnasium and 130 x 200 feet in the natatorium. Primary masts are spaced at 75 feet on center on one side of each space with secondary masts spaced at 25 feet on center on the opposite side. The primary masts support 3 girders while the secondary masts each support one. The masts were composed of composite steel tubes to resist the extensive loads. Large counter weights were used to resist the large uplift forces at the foundation.

Figure 14. Exterior Image of the Ratner Center at the University of Chicago

Once the team saw the Ratner Center, it was determined to attempt a cable-stayed design for the Penn State Ice Hockey Arena. The cable-stayed system would allow for an extremely unique structure that Penn State Ice Hockey would become synonymous for. It would allow for

Page | 18

babyak | sampson | schreffler

a thin roof section and allow for an open span from exterior wall to exterior wall totaling 252 feet. The system provided a great BIM/IPD study in relation to construction and design of the system while maintaining championship conditions inside the arena. Through integration with the construction manager, the structural system could be designed as efficiently as possible with constructability always in mind.

ASCE 19-10: Structural Applications of Steel Cables for Buildings

Having selected a structural system involving cables, an extensive search ensued to determine how to design a cable structure. The first major guide is provided by the American Society of Civil Engineers. In 1996, a guide on the Structural Applications of Steel Cables for Buildings was developed by a committee compromised of individuals involved in consulting engineering, research, construction industry, education, government, design, and private practice. In 2010, the guide was updated with more detail. The guide provides guidelines for drawings and specifications, design considerations, fittings, fabrication, and erection procedures.

For this project, the section on design consideration was used the most. Inside the design considerations section, the structural engineer can find load combinations, design strength values, reduction factors, and what to consider in the structural analysis. According to ASCE 19-10 the cable tensions shall be calculated for the following load combinations:

```
T_1 = Cable Tension due to D + P
```

 T_2 = Cable Tension due to $D + P + L + (L_r \text{ or } S \text{ or } R)$

 T_3 = Cable Tension due to D + P + (W or E)

 T_4 = Cable Tension due to $D + P + (L_r \text{ or } S \text{ or } R) + (W \text{ or } E)$

 T_5 = Cable Tension due to C + erection components of D, L, P, and W.

Once the load combinations are applied to the cables, the cables must have a design strength equal or greater than:

- a) $2.2T_1$
- b) 2.2T₂
- c) $2.2T_3$
- d) $2.2T_4$
- e) $2.2T_5$

These load combinations and design strengths were used in coordination with manufacturer supplied design values to design the cables.

Cable Manufacturer

Lights-Out Design worked in coordination with WireRope Works, the manufacturer of Bethlehem Wire Rope, in order to get manufactured strengths of cables at various sizes. For roof applications, WireRope Works manufactures three different products: a spiral strand, SS-265, and structural wire rope. The design values for spiral strand and SS-265 were used in the design of the cables for the cable-stayed system. Other than providing the values necessary for the structural design of cables,

		Page 19		
babyak		sampson	ı	schreffler

WireRope Works is also a local manufacturer located in Williamsport, PA, only 62 miles from Penn State.

Figure 15. Location of Wirerope Works in Williamsport, PA

Shape Selection

With cable design technical data in hand, the group focused on what the building would look like and how the cable-stayed system would work. The shape of the roof was the first major item to be determined. Would the roof be flat, angled, or arched? The group moved towards an arched roof for a greater aesthetic and to allow for greater heights at the center of the arena. The curve, also, reflects the curves of skate lines on the ice. An arched roof was selected as the final shape. The overall rise of the arch was determined by working to maintain at least the minimum height needed for the mechanical loft. The final roof rises almost 17 feet at its center from where it springs at the exterior connection to the mast.

Once the shape was determined, the next basic decision was where the masts would be located. If the group maintained the masts at the existing truss gridlines, there would be an extensive number of masts (9 on either side) at a semi-regular spacing. In coordination with the architectural plans the group was given, multiple possible spacings were investigated to determine which spacing would work for the structure and not have a negative impact on the architectural plan. After investigating several spacing alternatives, it was determined that the masts could be spaced at 60 feet on center with little interruption in the existing floor plans. On the interior, the columns would then be spaced at 30 feet on center to increase the regularity of the system on both the exterior and interior.

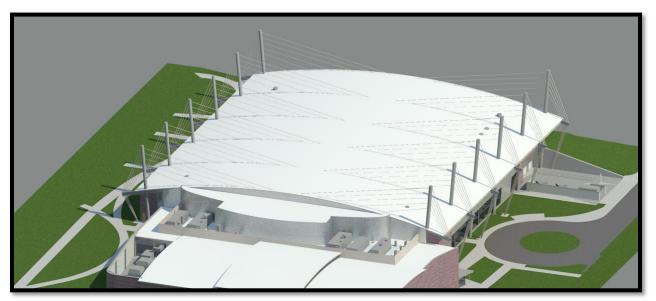


Figure 16. Exterior Image of the New Cable-Stayed Roof

The resulting cable-stayed system had 6 masts on each side spaced at 60 feet. Because the system was symmetric, the masts reach the same overall height above ice level. On the north side of the arena, the masts would be 20 feet less in length than the masts on the south side due to the sloping of the site. This slightly affected the length of the backstay cables. Overall, an extremely regular structure had been created.

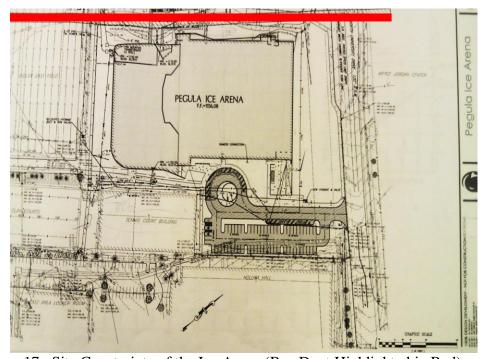


Figure 17. Site Constraints of the Ice Arena (Bus Duct Highlighted in Red)

The last unique feature in our cable-stayed design is a result of massive site restrictions. Typically, the mast backstays reach far out and extend rather intrusively into the site. For the Penn State Ice Hockey Arena, this was not an option. To the north of the site, a large bus duct that services a majority of the university runs just 30 feet from the north façade. On the south of the site, a parking lot and driveway to the loading dock, community rink, and hockey offices cannot be impacted. In order to achieve the necessary backstay and not impact the site, the girder of the cable-stayed system must extend out from the mast like an arm over the ground below. Cables would then extend from the mast to the edge of the girder and then cables would extend from the girder to a foundation near the base of the mast.

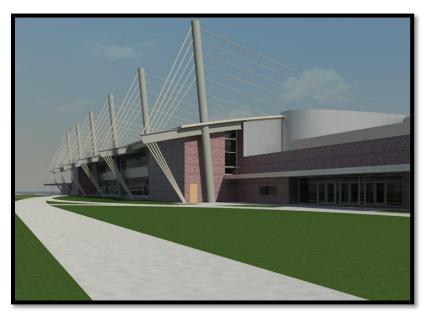


Figure 18. Student Entrance to the Arena

Structural Design of the Roof

babvak

With the basic geometry of the roof chosen, the structural design of the roof could commence. The roof system was modeled in SAP2000 as a 2-D model. In the first analysis models, a flat angled roof was analyzed to get a better understanding of how the roof worked in SAP2000 before moving to the final design. The span was approximated at 130 feet for each mast and the girder was divided into three four equal parts so that three cables could anchor to the roof girder. The backstay and mast foundation were modeled as pin connections. After a few struggles, it was determined that nonlinear analysis had to be conducted due to the use of cable elements. Another discovery from early analysis models was the large deflection caused by the last section of the girder from gridline D to E. It was clear that the longest cable had to connect closer to the peak of the roof. Another remedy was to account for the connection to the opposite mast and girder with a roller restricting motion in the x-direction. The last major discovery dealt with the angle of the cable connected to the girder. The more inclined the angle the greater the tension in the cables became. This increased tension caused large jumps in the bending moment at cable-to-girder connections. An attempt to make the cable running from the mast to the girders more horizontal would be made to help decrease irregular bending in the girder.

Page | 22
sampson | schreffler

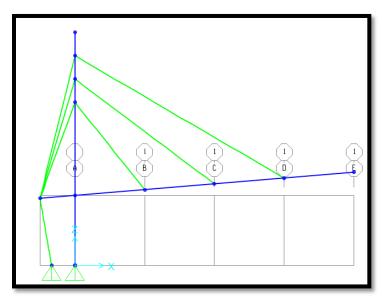


Figure 19. Preliminary SAP2000 Model of the Cable-Stayed Roof System

The early analysis model proved extremely valuable as the design moved forward. With a basic understanding of how the cable analysis worked in SAP2000, the actual design could be modeled and analyzed. First, the mast was modeled as a general frame element in two pieces with one piece running from the foundation to the girder connection and the next piece running from the girder to the maximum height of the mast. The mast was angled at 5 degrees to satisfy architectural ideas. Once the mast was modeled, the curved frame element for the girder was added. This was done by specifying a starting and ending point and then specifying a third point (the connection between the mast and girder) to finalize the curved shape. With those elements modeled, the cable elements could now be modeled. Nodes were placed along the mast and the girder. The nodes on the mast were spaced at 5 foot intervals starting from the top of the mast and nodes were spaced along the girder with connections spaced closer towards the roof peak. The cable elements were then added by specifying starting points and ending points and using the undeformed length option in defining the cable geometry. One of the new features in SAP2000 allows the user to define cable geometry in multiple ways depending on what amount of sag the user wants in the cable. For the cable-stayed roof, the cables are designed to always be in tension so having the cables in their undeformed length was preferred.

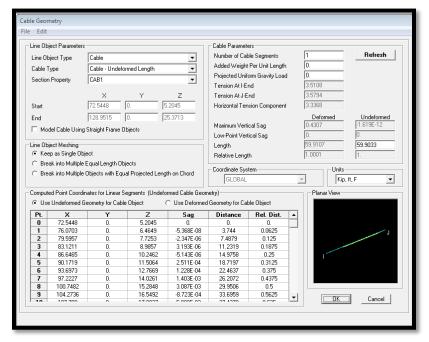


Figure 20. Screenshot of the Cable Geometry Input

In order to design the cable-stayed system, load combinations from ASCE 7-10 were used to determine a suitable design. The various loads applied to the structure included snow load, superimposed dead load, wind loads, and pretension. Because the cable load combinations described earlier have no adjustments, ASD load combinations from ASCE 7 were applied to the SAP2000 model. The load combinations used are as follows:

ASCE 7-10 ASD Load Combinations:

- 1. *D*
- 2. D + L
- 3. D + (Lr or S or R)
- 4. D + 0.75L + 0.75(Lr or S or R)
- 5. D + (0.6W or 0.7E)
- 6a. D + 0.75L + 0.75(0.6W) + 0.75(Lr or S or R)
- 6b. D + 0.75L + 0.75(0.7E) + 0.75S
- $7.\ 0.6D + 0.6W$
- $8.\ 0.6D + 0.7E$

Due to the arch of the roof, unbalanced snow loads had to be considered according to ASCE 7-10 Section 7.6.2. Being located in State College, PA, earthquake loads were not a major concern, but wind uplift on the roof was indeed a concern and analyzed extensively. The uplift ranged from about 34 psf on the windward quarter to 30 psf on the center half of the roof. Once loads were applied to the structure, the load combinations were applied and the results analyzed.

To determine the pretensioning necessary for the cables, a spreadsheet was created to determine initial strain values that could be applied for the structure. The cables were pretensioned to resist full dead load and half of the snow load. This allowed the cables to always

remain in tension. The cable forces were calculated from applied dead and snow loads and then the strain was determined using engineering mechanics. In addition, the cables were conservatively presized based on the cable load combinations presented earlier. Once the sizes were approximately set, the design could be sized down based on iterative analysis.

Once the geometry of the cable-stayed roof was modeled into SAP2000, loads could be applied and designs determined. First, the secondary beams and metal deck was designed so that those loads could be accounted for on the girder. In the team's first design attempt, the same deck that was being used in the actual design was applied to the cable-stayed design. 3N16 metal roof deck spaced at 14 feet on center was selected based on snow loads of 34 psf and a superimposed dead load of 35 psf. With the deck selected, the secondary roof beams were designed to resist the applied dead, snow, and live loads while maintaining serviceability criteria. The roof beams were designed as W30x90 members. Now, these loads could be transferred to the cable-stayed system modeled in SAP2000.

Moving through the first design idea using the existing roof, one concern became readily apparent. Uplift on the roof was going to be a major issue. Due to the weight of the trusses, a light roof cladding could be used without wind concerns, but, by removing the trusses and replacing them with a lighter system, the new design could no longer resist the strong uplift forces. The cable-stayed system was experiencing deflections of over 18 inches upward with the existing roof system. It was clear a heavier roof system would be needed.

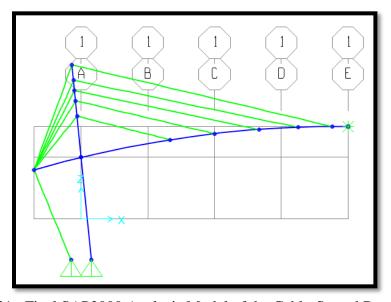


Figure 21. Final SAP2000 Analysis Model of the Cable-Stayed Roof

The team moved to a noncomposite concrete deck system in order to resolve the uplift issue. A new concrete deck provided the weight necessary to resist the uplift forces and also provided for better thermal properties, which would maintain the quality of the ice rink inside. The superimposed dead load increased to a 117 psf and a total load of 151 psf was used to design the new deck system. A 3C18 noncomposite concrete deck with 5" of NWC topping was selected. With the deck selected, the new roof beam could be designed and the resulting roof

beam was a W33x130. The overall added weight significantly impacted the movement caused by uplift.

The new dead loads were then applied to the SAP2000 model so that the cables could be redesigned. Originally the cables were upwards of 4 to 5 inches in diameter, but through several iterations the cables sizes decreased slightly. The sizing of the cables became largely affected by serviceability requirements of the girder. If the cables were sized for strength alone, they would have been around 2 inches in diameter. The final cable design ranged in size from 3.375 inches diameter to 5.25 inches diameter. In order to resist the large deflections and forces, (4) 5.25 inch diameter cables were used to anchor the backstay.

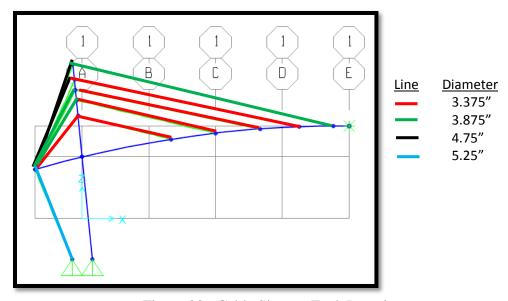
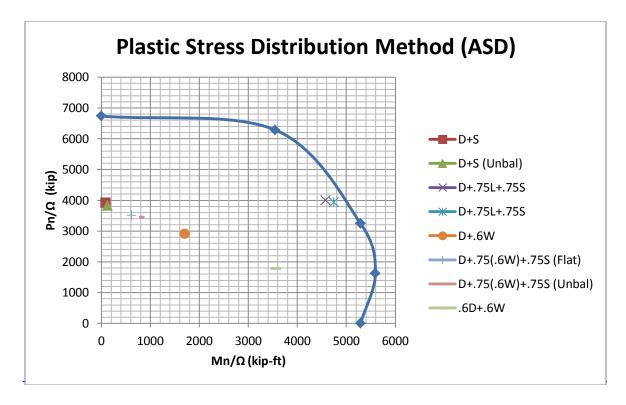


Figure 22. Cable Sizes at Each Location

In coordination with the design of the cables, the girder was designed to resist both axial compressive loads caused by the arched design and the bending caused by the large loads. In accordance with AISC Steel Construction Manual part 6 and Chapter H, the girder was designed as a doubly and singly symmetric member in flexure and compression. Once the forces were attained, the combined loading equation H1-1a was applied because the required axial load was over 20% of the axial capacity. Using the table seen below with information from Table 6-1 Combined Axial and Bending in the AISC Steel Construction Manual, the girder was designed as a W40x593. The girder satisfied all necessary strength requirements with serviceability criteria being handled by the cables.

Load Case	P (k)	M (k-ft)	pP _r ≥200	р	b	$pP_r + b_x M_{rx} < 1000?$
D+S (Flat)	2839	3112	596.19	0.21	0.129	997.638
D+S (Unbal)	2653	3421	557.13	0.21	0.129	998.439
D+.75L+.75S (Flat)	2938	1778	616.98	0.21	0.129	846.342
D+.75L+.75S (Unbal)	2889	2031	606.69	0.21	0.129	868.689
D+.6W	2107	2081	442.47	0.21	0.129	710.919


Page | 26

babyak sampson schreffler

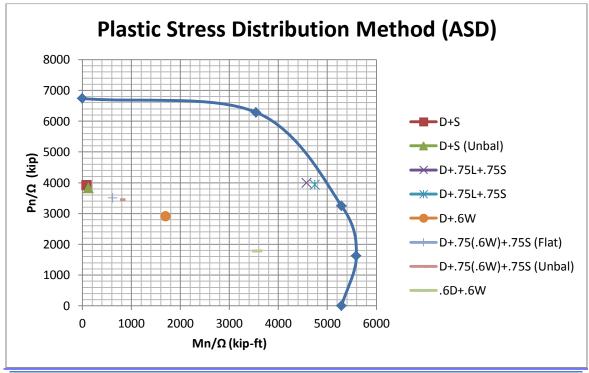

Lights-Out Design		BIM Thesis Final Report						
	PSU Ice Hockey Arena							
D+.75(.6W)+.75S (Flat)	2546	3019	534.66	0.21	0.129	924.111		
D+.75(.6W)+.75S (Unbal)	2889.5	2031	606.795	0.21	0.129	868.794		
.6D+.6W	1325	1101	278.25	0.21	0.129	420.279		

Table 1. Combined Loading Analysis of the W40x593 Girder

The last major portion of this design dealt with the mast. The mast is takes the loads from the roof transferred through the cables down to the foundation below. With the masts each supporting a tributary width of 60 feet, the axial loads under full load exceeds 4000 kips. In addition to this compression load, the girder induces a large bending moment caused by the wind uplift. In order to resist these large forces, composite columns were investigated. A composite column would provide additional axial capacity as well as greater lateral stiffness and greater redundancy. According to the AISC Steel Construction Manual Chapter I, the nominal strength of composite members subjected to axial force and flexure must be determined using either the plastic stress distribution method or the strain compatibility method. Through discussions with and equations provided by Dr. Geschwindner, the plastic stress distribution method was used to design the composite mast. Using the graph shown below, the mast was designed as a 1.5 inch thick 36 inch diameter steel tube filled with 8 ksi concrete.

babyak

Load Case	P (k)	M (k-ft)	Load Case	P (k)	M (k-ft)
D+S (Flat)	3908	94	D+.6W	2905	1704
D+S (Unbal)	3831	124	D+.75(.6W)+.75S (Flat)	3507	618
D+.75L+.75S (Flat)	3997	4580	D+.75(.6W)+.75S (Unbal)	3448	784
D+.75L+.75S (Unbal)	3934	4751	.6D+.6W	1783	3575

Chart 1 and Table 2. Plastic Stress Distribution Method Analysis of Composite Column

Unfortunately, a greater investigation into possible foundation designs was not possible due to time constraints. However a schematic analysis was performed to get an idea of what the deep foundation system might be. The greatest forces at the foundation were caused by the load case D + S. The cable anchors impose an uplift of 2743 kips and the masts applies a compressive force of 4559 kips. To resist the uplift, micropiles were schematically analyzed to determine potential size and shape. Due to the pinnacle rock nature of the site and the large loads on the columns of the arena, the existing design given to the team used micropiles in certain locations. Using the data provided in the geotechnical report, a 7 foot x 7 foot pile cap with (16) 7.5 inch diameter piles would provide the necessary strength to resist the uplift imposed by the cables. Due to size restrictions and the large compressive forces, caissons are probably the best option to transfer the large loads from the mast to the earth. To accomplish an accurate design, further geotechnical investigation should be completed at the specific location of the mast and cable anchors.

Ultimately, deflections impacted the cable-stayed roof system the most. The composite mast added significant stiffness and kept the roof from displacing horizontally. However, much iteration was needed to determine the best design of cable sizes and pretensioning needed in the

Page | 28
babyak | sampson | schreffler

cables. The final structural design was able to keep deflections limited to slightly less than 1/180 which is approximately 7.66 inches. Because the roof is not supporting a ceiling structure, this seems like a plausible limit, but again, more investigation into how that deflection would affect the roof cladding and roof structure would be necessary to ensure no part of the structure would be negatively impacted.

Thermal Analysis of the Roof

The final materials for the roof were coordinated and then modeled in H.A.M. Toolbox. An R-Value Analysis was calculated to find the total R-Value of the wall system. That R-Value was then inputted into the Trane Trace energy model. H.A.M. Toolbox was also used to do a condensation analysis. In order to create championship ice for the arena a roof structure was designed to eliminate condensation from forming in the arena. The indoor temperature settings for the main arena were 65 degrees F and 40 percent relative humidity.

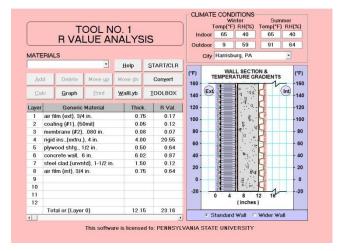


Figure 23. H.A.M. Toolbox R-Value Analysis

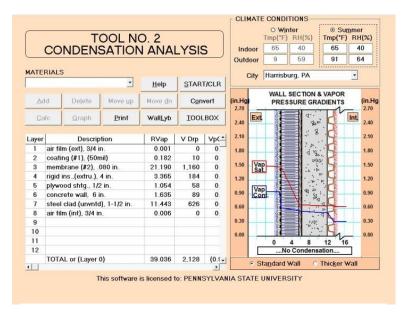


Figure 24. H.A.M. Toolbox Condensation Analysis

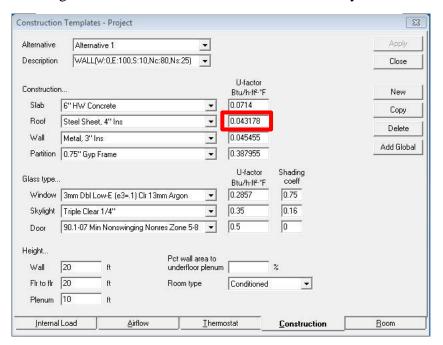


Figure 25. Trane Trace Construction Template

BIM Modeling of Cable-Stayed System

With the structural design of the roof completed, the question became how you model such a unique system in Revit Structure. There is no cable element in Revit and no columns at the size of the team's mast design. A separate Revit family was created to model the cable-stayed system. Reference lines were drawn at the center of all the elements (cables, masts, and girders). Once all of the reference lines were drawn, profiles of each element were added and the profiles were swept along the path of the reference line to create the overall design. This was done for the W shape of the girder, the cylinder of the mast, and the smaller cylinders of the cables. Steel materials were applied to each shape and the design was then imported into the Revit Structure model and the system was put into its proper place. With the cable-stayed system in place, schematic foundations could be attached to the base of the cable backstays and masts, the secondary roof beams could be added in between the girders, and the roof deck could be added to sit above the girder and beams.

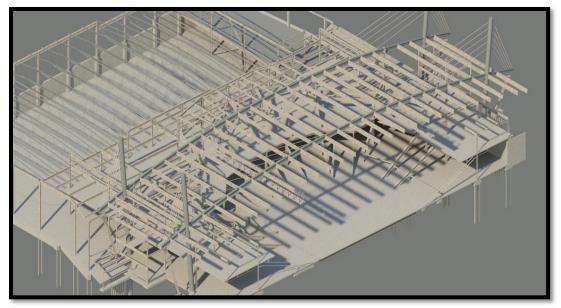


Figure 26. 3D Perspective of the Cable-Stayed Roof System in Revit Structure

Gravity Model of Structural System

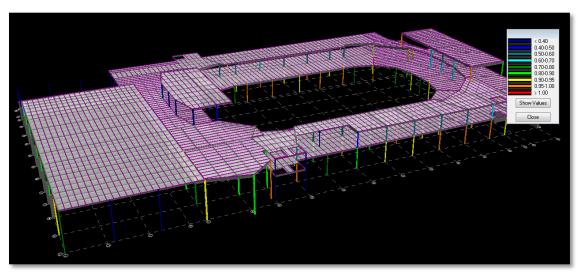


Figure 27. Model of the Gravity Structural System in RAM

Having decided to change the column lines to match the regular spacing and to add a mechanical loft above the lobby, the gravity structure was redesigned using RAM Structural System. After inserting the gridlines into RAM, beams and columns were placed in their appropriate locations. The roof was not modeled in RAM because RAM cannot design long span structures and is built for more regular structures. To account for added weight from the precast seating bowl, "rakers" were modeled as flat beams and the floor deck was extended to cover the precast seating bowl. Appropriate dead and live loads were applied based on the usage of the area. The predominant live load was 100 psf at most locations with 150 psf used for mechanical areas. On the areas exposed to the outside, snow drifts were checked and applied as necessary.

The planned composite decking (3VLI18) was checked for adequacy and used in the RAM model. The new typical bays were 30 x 28 feet compared to 32 x 28 feet, a typical framing plan can be seen below. Once the framing was complete, beams and columns were designed in accordance with the AISC Steel Construction Manual and ASCE 7. Typical column sizes under gravity loads were W10x54 along exterior of the typical concourse bays and W14x90 along the interior of the typical concourse bays.

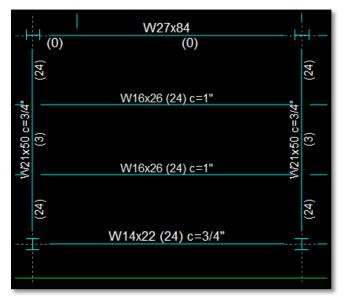


Figure 28. Typical Bay in the Concourse Levels

Once the gravity system was designed in RAM, the Revit Structure model was updated to match new column location and new framing based on coordination with the MEP system. New sizes were loaded into the Revit model as necessary to show actual sizes in the model. Updating the model after this process was extremely important in order to begin coordinating with the MEP system and allowed the team to begin determine areas of clashes. With the gravity model complete, the lateral system could be designed, analyzed, and modeled in Revit to again coordinate with the MEP system.

Lateral Analysis of Structural System

Due to the many structural changes in the roof and realigning several of the column lines, a brief lateral analysis was conducted to determine appropriate sizes of the lateral force resisting system. The existing lateral force resisting system consisted of moment frames along the concourses and shear walls below the Main Concourse Level. This was not changed. An additional moment frame was added due to the smaller bay sizes. The controlling lateral force of the Ice Arena was caused by wind loading. Seismic forces were not a major factor due to the relatively low mass of the structure and the site being designated seismic design category A.

Through the progression of the lateral analysis, several models were attempted in several different structural analysis and design programs. Because the gravity model was analyzed and designed in RAM Structural System, a first attempt was made to model the lateral model in RAM. However, when the program went to run its frame analysis, it had several issues dealing with the large hole in the diaphragm caused by the arena bowl. For some reason, it could not recognize all of the curves in the diaphragm and refused to run an accurate analysis. A second attempt was conducted in ETABS, but again errors resulted. In an attempt to model the diaphragm, the entire floor was modeled and then a hole should have been cut in the floor to represent the bowl. However, ETABS would not recognize the hole. So, in a third and final

attempt, the lateral system was modeled and SAP2000. SAP2000, being the most powerful structural analysis program of the three, provided satisfactory results.

The lateral system was modeled in SAP2000 using frame and area elements for the moment frames and shear walls respectively. The wind loads were applied using the automatic lateral loads built in to SAP2000 and checked by loads calculated by hand. Rather than modeling the diaphragm using an area element, a joint was placed at the center of mass and a mass was applied to represent the mass of the floor. Each level was then constrained to create a rigid diaphragm. A displacement limit of h/400 (1 inch) was targeted as the max allowable lateral displacement due to wind forces. With this target set, the moment frames were analyzed and designed using SAP2000. The final moment frame consisted of typical W14x99 columns and W24x104 beams. The shear walls were analyzed as originally designed at 12 inches thick and accepted at their original thickness.

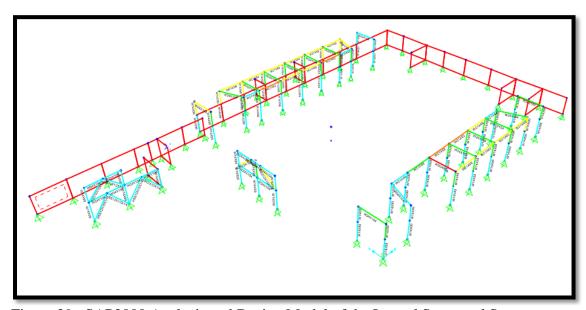
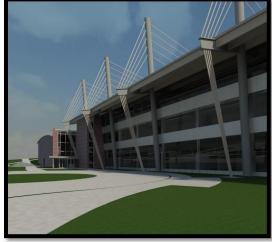


Figure 29. SAP2000 Analysis and Design Model of the Lateral Structural System

Architectural Impacts of New Structural System


The addition of a cable-stayed roof system and the movement of interior bays had a significant impact on the architectural design. First, the cable-stayed system caused the team to reconsider the façade and that design will be discussed later. In the old design, the building seems rather stagnant and flat, where as the new design is exciting and can be seen from afar as the masts tower 70 feet above the main concourse level where most of the patrons to the arena enter. The three main entrances to the arena now look vastly different due to the cable-stayed system. The main entry is now flanked by two masts on either side. The corners were kept in brick because they locate the vertical cores of the building and help anchor the arena. Below you can see the vast differences of the new design from the old design:

Figures 30 and 31. The figures above shows the original main entrance on the left with the new design on the right

Figures 32 and 33. The figures above shows the original community rink entrance on the left with the new design on the right

The depth of the structural system was reduced from 12 feet to less than 4 feet. This accomplished the sleeker appearance that the team wanted especially on the interior of the arena. The bulky steel trusses have been removed and replaced by a smooth curving steel girder with infill beams. The results can be seen below:

Figures 34 and 35. The figures above shows the original arena interior on the left with the new design on the right

Page | 35

babyak | sampson | schreffler

Figures 36 and 37. The figures above shows the original arena interior on the left with the new design on the right

In addition to the obvious changes in exterior and interior appearance, the coordination of architectural plan and column lines was altered to create regular 30 x 28 foot bays. Due to this change, some rooms had to be rearranged and altered slightly to ensure there were no conflicts between the use of the space and the column locations. The most obvious area of change is at the club level. Where large W24x176 columns were once necessary inside the arena to support the large steel trusses, now all of the support for the roof is on the exterior of the arena. This results in a mainly column free interior club level, which allows for greater flexibility in the design of the suites.

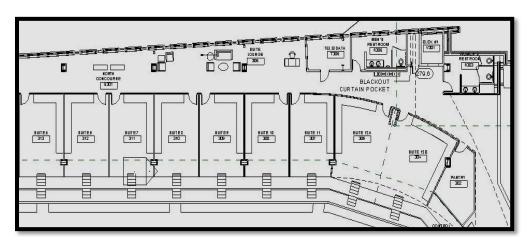


Figure 38. NE Corner of Existing Club Concourse Level Floor Plan

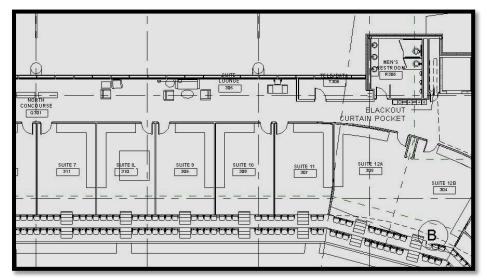


Figure 39. NE Corner of New Club Concourse Level Floor Plan

The exterior columns are still along the exterior façade of the Main Concourse Level, but the movement of column lines had some minor effects on the interior floor plan. In the existing design, columns impact large portions of the restrooms on the Main Concourse and inconvenience the coach's booths. While the new proposed design places more columns in the restrooms, they do not impact the space too much because they are much smaller than the previous interior columns. Thin architectural walls can be placed around the columns and still allow for the room to walk around and use the restroom freely. Columns in restrooms are pretty common in sports facilities and the new design does not negatively impact the restrooms any more than the existing design. However, the interior column relocation benefited the spatial use of the press box area. Columns that closed off the coach's booths in the existing design were moved and now only one column is in the press box area leaving much more usable space.

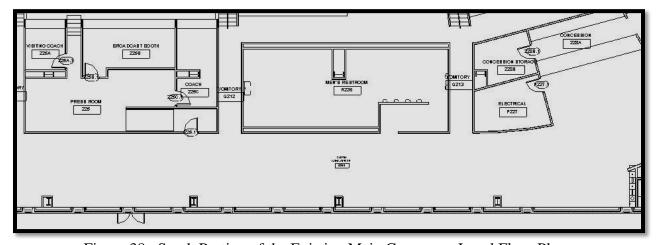


Figure 38. South Portion of the Existing Main Concourse Level Floor Plan

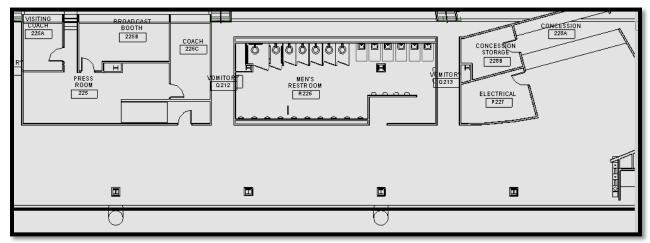


Figure 39. South Portion of the New Main Concourse Level Floor Plan

The relocation of columns affected the Event Level Floor plan the most. On the north portion of the Event Level, the interior columns aligned with the edge of a hallway, so moving them had little impact on the floor plan. However, the offices for the hockey operations are located in the south portion of the Event Level. With so many different smaller rooms located in the hockey operations area of the arena, any movement of columns caused conflict with rooms as they were designed originally. Fortunately, due to the small size of the rooms, they could easily be moved around so that columns impacted the corners of the spaces similar to the original design. The most notable changes occurred by flipping a few rooms around. To accommodate the new locations of columns, the Women's Head Coach's Office was switched with the Women's Recruit Lounge and the entrance to the Hockey Operations was switched with Waiting Area. Overall, the new column lines had minimal impacts on the architectural plans as a whole.

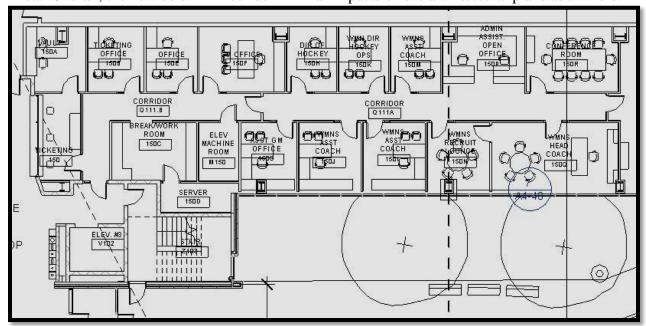


Figure 40. South Portion of the Event Level Floor Plan

Page | 38
babyak | sampson | schreffler

Figure 41. South Portion of the New Event Level Floor Plan

Mast Erection Process

The team elected to use a cable-stayed system to support the main arena's roof. Such a system requires the use of masts to extend upward beyond the roof line and support the weight of the roof through a system of cables. Furthermore, the utilized mast design required a backstay system for further support, which was combined into a singular mast element. Each mast would have to be erected and attached to the roof girders in stages in order to overcome the extreme size of the elements involved.

After coordination with each group member, the team finalized the design for the mast element itself. Taking cues from the Ratner Center in Chicago, the team decided to use a solid, singular, tubular steel mast, as opposed to a system of frames and latticework. The tubular design would be more aesthetic than the alternative and its streamlined look would complement the overall design goals for the arena. Using a singular, tubular mast would, however, create construction issues in terms of its erection. The team's design required 6 masts on both the North and the South faces of main arena. In order to address the difference in elevation between the North and South faces of the building, the masts on the South face had to be a total of 95' tall, as opposed to the masts on the North face which only had to be 75' tall. Transporting a solid steel member of 75' or 95' in length would be extremely impractical in terms of getting it to the site and maneuvering it into position once at the site. Therefore, the team decided to have the mast members cut into two pieces each. For simplicity purposes, it was decided that the masts would arrive on site in lengths of 30', 45', and 50', and would be combined on site to meet the height requirements for each mast, yielding a requirement of 12 mast members of 45', and 6 mast members of 30' and 50' each. These lengths are common enough to be easily transported to the site, and once at the site location, could be offloaded utilizing Mortenson's proposed vehicle/equipment access plan (entering the site at the location of the proposed parking lot to the immediate south of the building).

Once on site, each 45' length of mast will be offloaded in the vicinity of its intended location. The mast will be hoisted into position by the Grove RT 760 and connected to the foundation. While the mast is being erected, it will be supported by the crane until it is in position, and afterwards will be held upright by temporary supports anchored to the superstructure steel to ensure that the mast section does not collapse or fall over in any way before the roof steel is connected. Once the 45' length of mast is in place, it will be filled with 8ksi concrete in order to increase the stiffness and axial capacity of the mast. When the concrete has been allowed to cure enough to reach its acceptable strength, the top section of the mast will be hoisted into place and fastened to the bottom section. Again, once in place, the top mast length will be filled with 8ksi concrete. To reiterate, it will be extremely important to erect temporary supports for the masts until the roof girders are connected, as the masts alone will be angled and extremely heavy.

After the mast member is completely erect, work will begin on the backstay support system. Backstay cables will have been previously connected to the foundation system and poured over in place, and will be exposed enough at the top of the foundation to allow for connection to the top backstay cables. The backstay girder will be hoisted into position, again by the Grove RT 760, and connected to the mast by steel workers. It is important to note that the top half of the backstay cables should be attached to the backstay girder section before being hoisted into position in order to reduce the amount of time and work that connecting cables to the girder would require if done after the girder is in position. At this point, the Grove RT 760 will move on to the next mast location to restart this process.

On the erected mast, the foundation backstay cables will have to be connected to the cables hanging from the backstay girder. The bottom and top cables will not initially be able to touch; on the contrary there will be about a six inch gap between them. This gap will be closed during the tensioning process, which will provide more structural strength to the backstay configuration. A crew will set up a foundation cable tensioning device, (Figure 42), around each

Figure 42: Foundation Cable Tensioning Device, Tensile Surface Structures, p. 103

foundation cable. The device will grasp the exposed length of foundation cable in its bracket and will pull and tension this length up out of the concrete foundation by positioning a set of pressers between the foundation and the crossbeam of the device (see Figure 43). When the device has pulled enough so that the foundation cable can meet the hanging cable, the crew will pin the two cables together through each cable's connector and the cable will be tensioned. The backstay

cables should be connected in order from the inside of the configuration to the outside. The upper portion of backstay system should connect the mast to the backstay girder in a similar fashion, replacing the foundation cable tensioning device with a standard hydraulic cable tensioning device (Figure 44).

When the superstructure steel is erected and connected, erection of the roof steel will commence. W40 X 593 girders will span the roof, mast to mast, 252' total. In order to facilitate this construction, the girder will be cut into 42' sections, meaning that there will be six girder sections per span, which will facilitate transportation of the girders onto the site and will allow for easier lifts. The girders will be hoisted into place from the inside of the bowl by

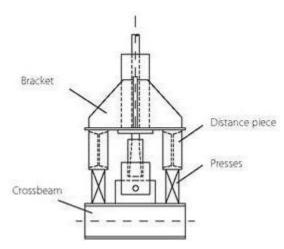


Figure 43: Foundation Cable Tensioning Device Diagram, *Tensile Surface Structures*, p. 103

the Grove TMS 900E. Girders will be attached to the mast and each other by steel workers as the process progresses. When a girder section is installed, it will first be connected to the mast if it is the first section out or to the previously connected girder. Once the girders are connected, a crew will go up on a man lift and tension the associated cables from the mast to the girder section. After a girder section is installed from one mast and is in the process of being tensioned, the crane will relocate to other side of the bowl and lift the opposite mast's girder into place. The girder sections will meet in the middle of the span and be connected.

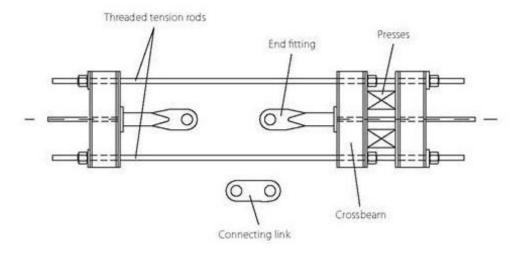


Figure 44: Hydraulic Tensioning Equipment for a free rope length, *Tensile Surface Structures*, p. 103

The spans will be completed from the east side of the building (starting along column line X16) and proceed west to column line X6. After two adjacent girders are completed, the connecting roof beams (W33 X 130s) will be installed between the two girders. For instance, after the girder along X16 is completed, the crane will proceed to erect the girder along X14. Once that girder is completed, the crane will lift the joining roof beams into position, followed by lifting the metal roof deck up onto the roof steel. When the roof deck is attached to the roof beams, a low-slump concrete will be poured over the roof deck. The concrete must be poured almost immediately after the roof deck is installed in order to weigh down the roof deck and prevent it from lifting off of the roof steel should a strong wind arise. It is important to note that the section between column lines X8 and X10 will not have roof steel installed until after the section between X6 and X8 is finished in order allow enough room to lift the roof beams and roof deck up to the span between X6 and X8. Once the section between X6 and X8 is finished, the section between X8 and X10 will be finished, from the north side to the south, and allow the crane to "finish out" through the gap between X8 and X10 in the superstructure steel. When the roof concrete is cured and finished, the roofing crews can continuously install the rest of the built up roof system over the entire roof.

Crane Selection

In order to facilitate the roof's construction, including the masts, it was determined that the project would need two cranes on site. One crane would operate around the perimeter of the building footprint, specifically used to erect each mast. Another crane would be located in the seating bowl of the arena and would be used to install the superstructure steel and the roof girders, beams, and roof deck. Furthermore, a man lift would have to be used to lift a steel crew into position for connecting the roof girders and tensioning the attached cables. The criteria for selecting each crane would include the boom length, the maximum lifting radius for the heaviest pick, and cost. Research was conducted to find local crane and equipment rental companies in order to obtain a realistic sense of what types of cranes would be available for this project, and their associated rates. Fiore Brothers Leasing Co. and Allison Crane and Rigging were consulted for hourly and daily rates of several cranes, as well as rates for transporting the cranes and associated counterweights to the site, which is reflected in Figure 45.

		Cra	ne Selecti	on		
Model	Tonnage	Crane Type			Rental Rate (\$/day)	Transportation Fee
Grove TMS 475	50	Truck	25	\$ 150.00	\$ 1,200.00	\$ 1,200.00
Grove RT 760	60	Rough Terrain	25	\$ 180.00	\$ 1,440.00	\$ 1,350.00
P & H T750	75	Truck	40	\$ 200.00	\$ 1,600.00	\$ 1,500.00
Krupp GMT - AT70	80	Truck	45	\$ 205.00	\$ 1,640.00	\$ 1,500.00
Grove TMS 900E	90	Truck	65	\$ 325.00	\$ 2,600.00	\$ 1,500.00
Link-Belt HTC 3140	140	Truck	60	\$ 350.00	\$ 2,800.00	\$ 2,400.00
Liebherr 1150	170	Crawler	120	\$ 425.00	\$ 3,400.00	\$ 3,200.00

Figure 45: Table showing crane selection data

babyak

The Grove RT 760, rough terrain crane was chosen as the crane to erect the masts. It was one of the smallest cranes examined, but it could still lift the required 25,000 pounds (the weight of a 50' section of mast) at a radius of 25 feet, which is more than an enough room for the crane to maneuver the mast into place. More savings were realized by selecting a smaller crane in terms of both rental rates and the transportation rate, as the smaller crane requires fewer counterweights.

The Grove TMS 900E was selected as the crane intended to erect the superstructure steel and the roof steel. It was selected because of its mobility as well as its efficiency. Compared to heavier, more expensive cranes, it has a better lift radius for lifting the required 25,000 pounds (weight of each girder section). Through careful planning, it can easily pick every piece of superstructure steel, as well as every girder and roof beam, as shown in Figure 46.

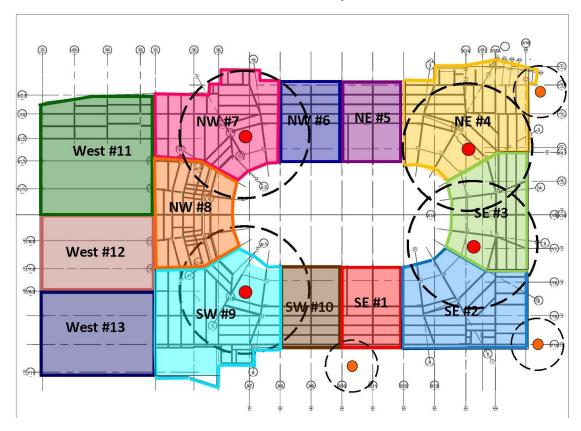


Figure 46: Steel lift configuration map. Orange circles with smaller radii represent locations for the Grove RT 760 and red circles with larger radii represent locations for the Grove TMS 900E.

Crane/Equipment Comparison

In order to fully evaluate whether or not the team's proposed roof design was better than the existing design, the erection process for each and therefore the equipment required for erecting each design had to be compared. It was revealed in a meeting with Gene Hodge, Senior Project Manager for Mortenson Construction, that the existing design would be erecting using two crawler cranes: a 200 ton crane and a 300 ton crane. The 300 ton crane would hoist two-thirds of each roof truss into position while the 200 ton crane would simultaneously hoist the remaining third of each roof truss into position. While still being supported by the cranes, steel crews would climb onto the trusses and bolt them into place. Because Mortenson was still unsure exactly which model of cranes they would use at the time of the interview, rental rates were determined by contacting local crane rental companies that had 200 and 300 ton cranes for rent.

The closest rental company to have these sizes of cranes was Greiner Crane, which has a rental location in Pittsburgh. After talking with a rental representative, it was determined that the 300 ton crane would cost approximately \$4,160 per day and \$3,500 per day for the 200 ton crane. Additionally, there would be a fee for transportation each crane and its associated counterweights to and from the site: \$5,280 (each way) for the 300 ton crane and \$8,000 (each way) for the 200 ton crane. The costs for the proposed equipment (two cranes and a man lift) versus the costs associated with the required cranes for the existing roof (300 and 200 ton cranes) are reflected in

	Existing	vs. Propo	sed Equipme	ent Cost	S
	Equipment	Daily Rate (\$/Day)	Transportation Fee	Time on Site (Days)	Total Cost
Redesign	90 Ton Crane	\$ 2,600.00	\$ 1,500.00	124	\$ 325,400.00
	60 Ton Crane	\$ 1,440.00	\$ 1,350.00	73	\$ 107,820.00
	80' Man Lift	\$ 640.00	\$ 200.00	121	\$ 77,840.00
<u>.</u>				Total:	\$ 511,060.00
Existing	200 Ton Crane	\$ 3,500.00	\$ 5,280.00	97	\$ 350,060.00
	300 Ton Crane	\$ 4,160.00	\$ 8,000.00	97	\$ 419,520.00
3 S				Total:	\$ 769,580.00
	Total	Difference	e of: \$258,5	20.00	

Figure 47: Table comparing equipment costs for the existing roof design and the redesigned cable stay roof system.

the Figure 47. The durations required for the proposed equipment were determined after a creating a revised schedule analysis. Durations for the existing system's required equipment reflects a rough estimate ascertained by contacting Mortenson. As shown, adopting the team's proposed cable-stayed roof system will yield a savings of \$258,520 in terms of equipment required. Although estimated to be on site for a longer period of time, the proposed equipment's smaller size and lesser rental and transportation rates explain these savings.

Steel Takeoffs and Cost

To determine whether or not the team's cable-stay roof design should be implemented, the existing and proposed systems were both analyzed from a cost perspective. These cost analyses were executed by using Revit Structure's Quantity Takeoff tool and applying cost data to the required structural members. Cost data was gathered from a meeting with Gene Hodge, Senior Project Manager for Mortenson, who estimated that steel for the roof trusses cost approximately \$4,800 per ton of steel and the superstructure steel cost approximately \$2,900 per ton of steel. The quantity takeoffs performed in Revit for both the existing system and the proposed system were exported into Microsoft Excel in order to organize the steel's tonnage and cost per ton. First, the existing and proposed systems' superstructure steel requirements were analyzed, as reflected in Figures 48 and 49. Because the team's proposed cable-stay system

Existing Superstructure Steel						
Member Type	Total Type Weight (Tons)	Price (\$2,900/Ton)				
Columns:	225.30	\$ 653,370.00				
Framing:	640.61	\$ 1,857,769.00				
Total	865.91	\$ 2,511,139.00				

Figure 48: Table showing the existing superstructure steel tonnage and cost.

Redesigned Superstructure Steel						
Member Type	Total Type Weight (Tons)	Price (\$2,900/Ton)				
Columns:	101.36	\$ 293,944.00				
Framing:	484.07	\$ 1,403,803.00				
Total	585.43	\$1,697,747.00				

Figure 49: Table showing the redesigned cable stay system's required superstructure steel tonnage and cost.

creates a lighter roof system, the team's structural engineer was able to size down and eliminate many members of the arena's superstructure as it no longer had to support such a heavy roof. This reduction in superstructure steel yielded a savings of 280.48 tons of steel and a cost savings of \$813,392.

Existing Roof							
	Total	Unit		Price/Unit		Price	
Trusses:	249.74	Ton	\$	4,800.00	\$	1,198,752.00	
Joists:	107.70	Ton	\$	2,900.00	\$	312,330.00	
Roof Skin:	88376.00	SF	\$	12.00	\$	1,060,512.00	
Cranes:	194.00	Day	\$	7,660.00	\$	769,580.00	
			Tota	al	\$	3,341,174.00	

Figure 50: Table featuring the cost of the existing roof system.

Next, the existing roof system and proposed cable-stay system were analyzed. Again, quantity take offs were performed on each Revit model and exported to Microsoft Excel for organization. The existing roof cost analysis factored the system's required trusses, joists, roof

Redesigned Roof							
	Total	Unit		Price/Unit		Price	
Beams:	559.25	Ton	\$	2,900.00	\$	1,621,825.00	
Girders:	755.48	Ton	\$	4,800.00	\$	3,626,304.00	
Masts:	282.54	Ton	\$	2,900.00	\$	819,366.00	
Cables:	-	Feet		÷	\$	4,500,000.00	
Roof Skin:	90800	SF	\$	12.00	\$	1,089,600.00	
Cranes:							
60 Ton Crane	73	Day	\$	1,440.00	\$	107,820.00	
90 Ton Crane	124	Day	\$	2,600.00	\$	325,400.00	
Man Lift:	121	Day	\$	80.00	\$	77,840.00	
			Total		\$1	12,168,155.00	

Figure 51: Table reflecting the total cost of the redesigned cable stay roof system.

skin (the cost of which was also provided by Mortenson's Gene Hodge) into the total cost, which can be seen in Figure 51. The proposed, redesign roof cost analysis factored the system's cables, masts, roof girders, roof steel, and crane/equipment costs into the total cost in order to accurately

Total Roof System Cost					
Existing	\$	5,852,313.00			
Redesign	\$	13,865,902.00			
Difference	\$	(8,013,589.00)			

Figure 52: Table comparing the total costs for the existing roof design and the redesigned cable stay roof system.

compare to the existing roof total cost, and can be seen in Figure 52. The superstructure steel costs of each system are combined with these total roof system costs and summarized in Figure X. As noted, the team's proposed cable-stay system would cost \$8,013,589 more than the existing system. Such a massive cost overrun on the part of the redesigned roof system can be attributed to the extensive use of custom made materials in the form of great lengths of extremely large-diameter cables, as well as the cable masts which are extremely irregular. After consulting with Tom Secules, Project Manager for Structural Products for Wirerope Works (our proposed cable manufacturer), who provided the cost estimate for the group's cables, it would seem that the design could realize greater cost savings if the team had more time to coordinate with Wirerope Works on the cable design and keep perfecting the system. He believed such efforts would result in smaller-diameter cables used throughout the project which would significantly reduce the costs of the cables.

Steel Erection Sequence

As previously stated, the steel erection will require two cranes on site: the Grove RT 760 and the Grove TMS 900E. The Grove RT 760 will assist in the erection of the masts and will also lift the community rink's structural steel and the East Mechanical Loft's mechanical equipment into place. The Grove TMS 900E will be positioned in the arena bowl and erect all of the main arena's superstructure steel as well as the roof steel.

Similar to Mortenson's proposed steel erection sequence, the team broke up the superstructure steel sequence into sections (Figure 53). Each section's steel will be erected in its

			Page 48		
babya	k	I	sampson	l	schreffler

entirety so that all levels' steel will be erected. The steel will be erected in a counter-clockwise direction, starting with SE #1 and initially ending at SW #9. SW #10 will be left open in order to facilitate steel delivery into the arena bowl and allow the TMS 900E to exit the bowl once the roof is erected. SW #10's superstructure steel will be completed as the crane moves out of the main bowl, after the roof steel is erected. The TMS 900E will not erect the community rink's structural steel; after the masts have been erected, the RT 760 will relocate to the west of the building and lift the community rink's structural columns, roof joists, and roof deck into place.

Following the progress of the superstructure steel, the RT 760 will erect the masts associated with each section (ie masts at X10 and X12 for section SE #1, and so on). The team

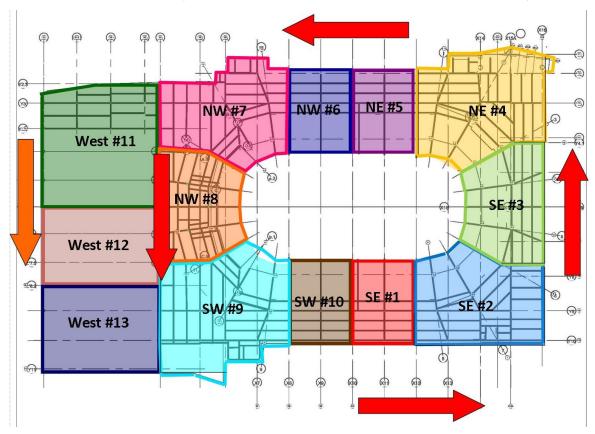


Figure 53: Structural steel erection sequence map. The red arrows indicate the direction of the superstructure steel erection sequence by the TMS 900 Ewhile the orange arrow indicates the structure steel erected and its direction by the RT 760.

estimated that the erection time for each mast will be approximately 4 days. After analyzing the redesigned construction schedule, it was noted that there will be 12 days between when the RT 760 finishes erecting the north mast at column line X6 and when it can begin work on the southern mast at column line X6, due to the time required for the TMS 900E to finish erection sections NW #7, NW #8, and SW #9. Furthermore, the concrete slab for the East Mechanical Loft will have been cured and finished by this time. Therefore, the RT 760 will relocate to the east side of the building to lift the air handling units that will be relocated to the East Mechanical

Page | 49

babvak

sampson

schreffler

Loft. Moving these units during this period of time ensures that they will be able to be lifted in and positioned well before work will begin on the roof immediately overhead. Furthermore, because of the limited clearance between these mechanical units and the roof, installing them at this time will allow plenty time for the crews to install and connect all units before the roof is erected overhead. After the units have been lifted into place and the TMS 900E has completed enough of SW #9's superstructure to continue, the RT 760 will relocate back to SW #9 and install the southern masts at column lines X6 and X8. As previously mentioned, the crane will then move on to erect the community rink's structural steel after the masts have been erected.

Like Mortenson's existing concrete pouring plan, the team split up work into sections (see Figure 54) by combining the previously utilized steel erection sections into groups of three. Concrete will be poured by level over each of these pouring sections. Pouring will begin on the Main Concourse level of SE #1 immediately after the steel floor decking has been installed on

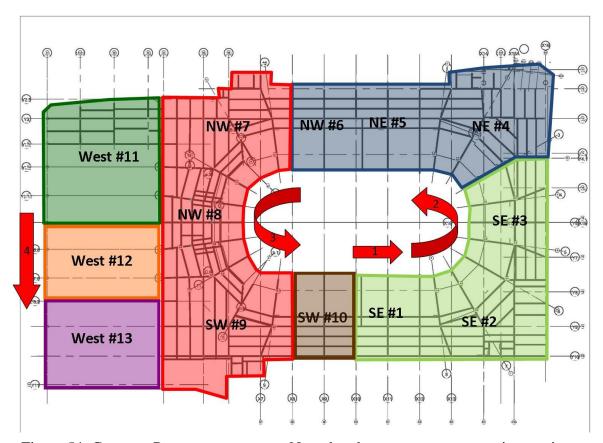


Figure 54: Concrete Pour sequence map. Note that the superstructure erection sections are combined into larger concrete pour sections. Concrete for the community rink will not be poured until after the red section is poured and finished.

the above Club Level. As seen in the redesigned schedule, the work is staggered so that the floor decking of SE #2 and SE #3 will be completed in a fashion that will allow concrete to be poured

	Page 50		
babyak	sampson	I	schreffler

virtually continuously over the entire Main Concourse level. Once the Main Concourse level has been poured for a section, crews will repeat the process on the next level, the Club Level. Work will continue in this fashion until all levels of a concrete pour section have been poured over twice. The crew will then move on in a counter-clockwise fashion to the next concrete pour section until SW #9 has been poured, upon which the concrete crew will move on to pour the community rink's slab on grade and roof concrete. It is important to note that the concrete pour section including NW #7, NW #8, and SW #9 will be accessed from the west because work was coordinated so that the community rink (sections West #11-13) will not begin steel erection until after all concrete work in NW #7, NW #8, and SW #9 is complete. This will allow concrete placing equipment such as pump trucks to position themselves closer to where they are required.

SW #10 will be completed after all roof steel has been installed. This omission of superstructure steel and concrete facilitates the unloading of materials in the arena's bowl itself for easy access for the TMS 900E. Furthermore, section SW #10 could not be completed until after the roof steel is erected in order to allow the crane to be removed from the bowl.

Main Roof Redesign Conclusion

After completion of the main roof redesign, several conclusions were apparent. First, several iterations would be necessary to make the cable-stayed roof design feasible. In discussions with WireRope Works, they believed that it was very possible to cut the amount and sizes of cables down if Lights-Out Design were able to continue the design. Also, other shapes and materials could be considered for the backstays of the mast to reduce cost. Overall, the design showed the team how important it is to get involved with the construction manager and cable manufacturer early in the design process. With earlier input and suggestions from the manufacturer, the cost of the roof could have been significantly reduced.

It is now evident why the actual design only spans the main bowl. Without thinking outside the box, a steel truss that spanned out-to-out would have been extremely expensive. In order to span such great lengths, extreme coordination is necessary between every member of the design team. With today's technology, it is now easier than ever to design and fabricate custom shapes and sizes. Without the use of BIM and IPD, the cable-stayed roof design would have been extremely difficult for a team of rather inexperienced engineers. Through the use of Revit and Sketch-Up, the team was successfully able to design a potential roof that would span the entire arena with reduced depth and to develop a potential erection procedure. While the team realizes that our exact design is probably not feasible at this stage, the team feels that through continued shape finding and even greater use of BIM programs a cable-stayed roof design for the Penn State Ice Hockey Arena could become a reality.

Façade Redesign

Continuing with the team's vision of an iconic design the overall building façade is the next system that merited extensive investigation. In keeping with the main concept of a visually light-weight structure and facade, the design-development façade we were given, which utilized a heavy brick façade, was redesigned to produce a building that, architecturally, is more cohesive with our proposed roof design and contextually appropriate. The goal, through this redesign, was to create a visually appealing roof and façade integration where the roof appears to be floating and hovering above the structure itself.

To achieve this goal, thin lightweight materials such as glass and metal panels were investigated for use on the exterior. A secondary consideration in the selection of materials was their context and use around campus. Although the end goal is for an iconic building, our team feels that, by effectively utilizing similar building materials found around campus our proposed design can better fit into the context of the university while still maintaining visual prominence. A large part of inspiration for the selection of materials came from the HUB-Robeson Center located on campus and also from the Ratner Center located at the University of Chicago.

Figure 55. Design Development North Brick Facade

Figure 56. Design Development South Facade

Figure 57. North Concourse Façade

Thermal Analysis of the Façade

The façade was redesigned in order to complement the cable stay roof. The cable stay roof allows for a much lighter façade. With a lighter façade the roof will look as if it floating instead of just sitting on a brick box. Metal panels and glazing substitutes the brick façade only for the concourses in the redesign. Centria Smart-R Wall Solution was chosen for the metal panel façade. Centria is an all-encompassing façade that includes the vapor barriers, insulation, and metal panel in one system. This façade was also chosen for the high R-Values, R22 for the metal panel and R3.5 for the glazing. These R- Values were inserted into the Trane Trace analysis model.

Figure 58. Centria Smart-R Wall Solution

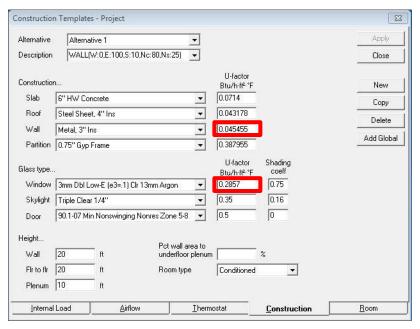


Figure 59. Trane Trace Construction Template

A life-cycle analysis was performed in order to analyze the energy costs of the façade redesign. The façade for the concourses and event level offices was changed from brick to the metal panel design in the Trane Trace model and the life-cycle cost was calculated. A wall to glass ratio analysis was then performed. The glass percentage of the concourse facades was first evaluated at 90% wall area and then analyzed in 10% increments down to 50%. A breakdown of the analysis is shown in Figure X.

Façade	Life-Cycle Cost
Schematic Brick	\$8,678,995
Schematic Metal Panels	\$8,682,912
90% Glass	\$8,825,755
80% Glass	\$8,793,717
70% Glass	\$8,764,696
60% Glass	\$8,737,283
50% Glass	\$8,717,036

Figure 60. Façade Redesign Life-Cycle Cost

The final façade redesign consists of 70 percent wall area glazing. This façade has increased daylighting, a thin feel, and is only \$85,701 more in energy costs over 30 years. This equates to less than \$3000 a year in additional energy costs. The actual difference is most likely less because the life-cycle analysis did not include a thorough daylighting analysis and the occupation schedules were conservative. The concourse spaces will have low occupancy throughout the life of the arena.

Figure 61. Façade Redesign South Elevation

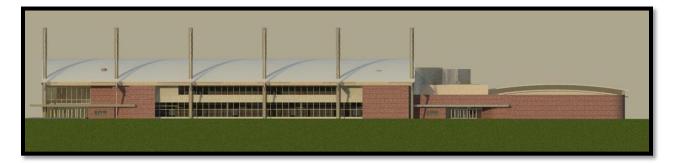


Figure 62. Façade Redesign North Elevation

Façade Takeoff and Cost Estimates

After having redesigned the main arena's roof system, the team was afforded the opportunity to redesign the arena's façade. From an architectural standpoint, the team had to create an exterior that would complement the unique, newly designed cable stay roof. The new roof's design appears very streamlined, sleek, and light, as opposed to the existing roof design which seemed very bland and box-like. Furthermore, the existing façade's appearance is very monolithic and imposing, which would not balance well with the lighter, more graceful cable stayed roof. Therefore, the team decided to change the façade's shape and materials to mirror the roof's lightness, and make the roof look almost as if it was floating, like a tent or a canopy.

Through coordination the team began to analyze what affects using new materials would have on the building's performance, appearance, and bottom line. After the MEP engineer came to a conclusion about the ratio of glass to brick to metal panels that would optimize thermal efficiency and still increase daylighting into the arena's concourses, the group as a whole began

to incorporate those elements into the façade design. In order to create the appearance that the roof is suspended above the arena, and to reflect the prominent main lobby curtainwall, the team essentially eliminated the exterior brick walls on the building's north and south elevations and replaced them with huge curtainwall sections, which use a combination of glass and metal panels. The brick was kept around the stairwells to create the appearance that they were holding up the roof at each corner, again in keeping with our tent-like theme.

Once the design was finalized, the materials required were tallied up and multiplied by their respective cost and duration values and compared with the original façade design. This take off estimate was performed using Revit Architecture. First, wall sections in the existing design were highlighted to determine the square footage of each section. Once the entire north and south facades had been highlighted and the square footage had been input into Microsoft Excel, each wall section was then labeled by the material it was comprised of; either glass (curtainwall), metal panel, or brick. The same process was done to the redesigned façade. Cost data, given to the team by Gene Hodge, Senior Project Manager for Mortenson Construction, was then applied to each material in a price per square foot format. All of the wall sections were summed up and the total price for each façade design was determined. It should be noted that all prices included the cost of labor. Furthermore, the cost of a brick wall included \$20/SF for the brick itself, \$12/SF for backup framing and sheathing, \$3/SF for rigid insulation, and \$2/SF for the waterproofing/moisture barrier. The analyses are summarized in Figure X.

Durations for installing the façade materials were determined based on the anticipated rate for the existing façade design. First, a wall section of a particular material was highlighted in Revit to determine the square footage. Next, that wall section was located in Mortenson's existing construction schedule to determine the amount of days required to complete construction of that particular wall section. Then, the square footage of the wall section was divided by the total amount of days anticipated to complete the wall to yield a duration in the format of square footage completed per day (SF/day). Last, the daily output was multiplied to the total square footage required for that particular façade material. For instance, if a brick wall section was determined to have a square footage of 1,036.85, and it was anticipated to take 13 days to complete the wall including framing, installing lintels, sheathing, air/vapor barrier, brick ties, rigid insulation and brick laying, then the daily output of installing a brick wall all told is 80 SF/day, or 1,036.85 SF / 13 days. The same procedure was used to determine the average daily output and duration for each material type. The daily outputs and derived durations for each wall material are also exhibited in Figure 63.

Ι

	Wall Type	Total SF	Daily Output (SF/Day)	Cost/SF	Total Duration (Days)		Total Price
Existing:	Curtainwall	13760	375	\$ 60.00	37	\$	825,600.00
	Exterior Brick	15570	80	\$ 37.00	195	\$	576,090.00
	Metal Panel	5770	50	\$ 52.00	120	\$	300,040.00
				Totals:	351	\$	1,701,730.00
Redesign:	Curtainwall	24065	375	\$ 60.00	64	\$	1,443,900.00
	Exterior Brick	7547	80	\$ 37.00	94	\$	279,239.00
	Metal Panel	4361	50	\$ 52.00	90	\$	226,772.00
				Totals:	249	ş	1,949,911.00

Figure 63: Table comparing the cost and durations of the wall materials associated with both the existing façade system and the redesigned façade system.

The redesigned façade yielded several changes in cost and duration as compared to the existing design. First, the redesigned system is estimated to cost \$241,181 more than the existing system. This difference is likely due to the fact that the redesigned façade requires almost 10,000 square feet more of glass curtainwall, which is far more expensive than brick, than the existing design. However, this increase in materials' cost was mitigated by the elimination of about 10,000 square feet of brick used in the façade.

The redesigned façade also saved 102, what we will call, "crew days". Crew days are different from "days" in that implementing the redesigned façade does not mean that the façade will be completely done 102 days sooner than the existing façade would be. On the contrary, according to the redesigned construction schedule, constructing the redesigned façade would actually take longer to complete than the existing. However, these "crew days" are total days that any one crew will have to be on site. Saving 102 crew days means that Mortenson will not have to pay the equivalent of having a combination of crews on site for 102 days. These savings in "crew days" come from the reduction of brick walls used in the façade redesign, because brick walls require a number of crews to be involved in the construction of a single wall (ie. framers,

Page | 57
babyak | sampson | schreffler

insulation installers, brick layers, etc.). By eliminating the square footage of brick required, the team has eliminated the time required on site for a number of contractors. These savings in "crew days" can be reallocated in the construction schedule in order to realize further savings, say, be hiring multiple brick laying crews simultaneously in order to speed up façade construction.

Lastly, the redesigned system does not take into account savings from energy usage that would be impacted by increasing the amount of daylight into the concourses. Because of this, it can be assumed that there will be a significant decrease in energy usage to light the concourses which will translate into further savings. Despite the increase in cost, there are many advantages to utilizing the team's redesigned façade, including further savings in energy and crew allocation, as well as the advantage of having a more aesthetically appealing arena.

Construction of the redesigned facade will begin at the northwest corner of steel erection section NW #7. Once the concrete is poured and finished at the club level of NW #7, work will commence on the facade and will continue up the entire exterior face and in a clockwise direction around the building. The northwest corner of the main arena was chosen to be the starting point for façade construction because of its distance from the loading dock located at steel erection sequence SE #2. The team wanted to use the loading dock to unload materials that were to be used on the building's interior, such as mechanical ductwork, metal studs, electrical conduit, etc and distribute these materials along the previously poured and finished concourse levels. However, unloading and transporting materials from the loading dock carries with it an inherent risk of damaging previously finished work, such as drywall, mechanical duct installation, etc. Therefore, the northwest corner of the arena was scheduled to begin facade construction first so that it would also be the first section of the building to begin sealing up and start finishing work. That way, materials could be transported from the loading dock, through the unfinished portion of the concourses en route to the northwest corner where finishing work was actually taking place, thus, reducing the risk of going through previously finished sections and damaging that work. Then, the interior work could finish out through the loading dock, or through SW #9 if that would work better.

Façade Redesign Conclusion

The façade redesign was an architectural necessity. The cable stay roof would not have been architectural effective with a thick brick façade. The glass and metal panels succeeded in creating a lightweight feel of the structure. The significant increase in glass improved the daylighting substantially in the concourses surrounding the main bowl. The façade redesign increased energy costs by \$85,701 over the life-cycle of the building but this equates to only \$3000 more a year in energy costs. The concourse spaces will be occupied at full load only during main events in the arena which only occur a few hours a day. Lights in the lobby and concourse spaces should not have to be turned on during the day which will result in significant energy savings. The cable roof with the façade redesign creates an iconic model for Penn State Ice Hockey. Assuming that the cable roof structure will be constructed, this façade redesign is feasible.

		Page 58		
babyak	ı	sampson	ı	schreffler

Community Rink Roof Redesign and Mechanical Loft Design

The final topic for redesign that Lights-Out Design chose centered on the design of the community rink roof and the efficiency of the mechanical system. Because the community ice rink will be used more than the main arena and almost 24 hours per day 7 days per week, the group felt that it was important to address daylighting in the community rink. In order to accomplish increased daylighting, the group chose to alter the roof design. The new roof design would allow for more daylighting opportunities in the rink and a more aesthetically pleasing design.

In order to alter the community rink roof, several mechanical units had to be moved. After inspecting the existing mechanical system design, the group felt that the mechanical system's efficiency could be greatly improved by relocating units to another location rather than just grouping them in between the main arena and community rink. So in a sense, the design became driven by two different ideas: one, improve the quality and feel of the community ice rink, and two, improve the efficiency of the overall mechanical system.

In order to increase the efficiency of the mechanical system, the group decided to move several units to a loft above the front lobby. After designing the loft to fit architecturally and structurally, several iterations of clash detection were necessary to coordinate the new structural and mechanical systems. Through the use of BIM/IPD processes, Lights-Out Design was able to efficiently redesign the mechanical and structural systems to coordinate new mechanical shafts and new duct runs. Without the early introduction of BIM, the team would not have been able to realize the design challenges that resulted from the drawings the team was given to work from.

Community Rink Roof Design

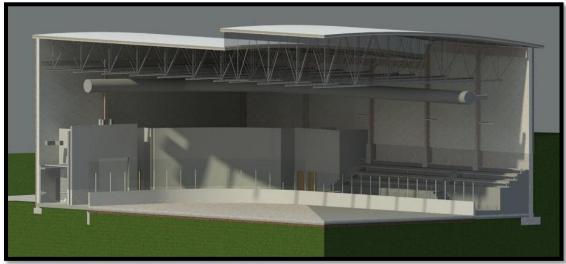
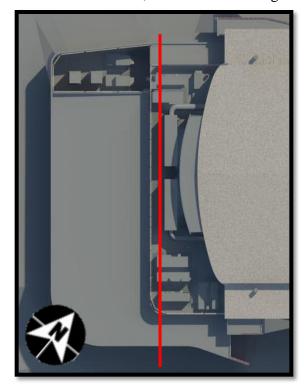



Figure 64. 3D Section of the Community Rink Roof

The community rink roof design was driven by the daylight design. In coordination with the lighting/electrical team member, the structural engineer worked to design a roof that could accomplish the daylighting goals and create an aesthetically pleasing complement to the cable-

Page | 59
babyak | sampson | schreffler

stayed roof of the Main Arena. In order to create a design different from the flat roof of the existing design, mechanical units had to move to the east of gridline X4. With the creation of the mechanical loft, a flexible roof design could be accomplished.

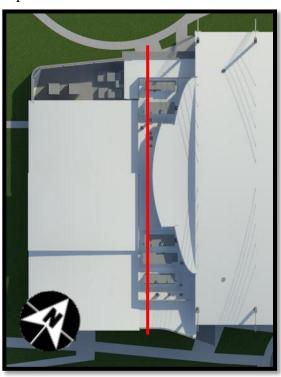


Figure 65 and Figure 66. The Movement of Mechanical Units to the East of Gridline X4

Through discussions with the lighting/electrical team member, the team chose to create an arched roof similar to the main arena roof. To infuse daylighting into the arena, the roof would be divided into three equal parts with the center part raised higher above the two flanking sides. This would create an area where a ribbon of windows could be placed between the lower section of the roof and the raised section of the roof. To help minimize cost and increase regularity, a bowstring joist from New Millennium Building Systems, a special steel joist manufacturer.

To use the special steel joist catalog provided by New Millennium, the structural team member used the design method provided by New Millennium. A roof dead load of 31 psf, snow load of 34 psf, and uplift of 20 psf was applied to the community rink roof. To keep the joists somewhat regular and similar to the original flat long span joists, a spacing of 11.5 feet was used for the joists. The bowstring joists are specified based on span, end depth, center depth, and top chord radius. A radius of 332 feet was selected based on aesthetics for the bowstring joists. To create the ribbon of windows between the lower section of roof and the upper section, the center depth of the joists was varied using 104 inches for the lower roof sections and 164 inches for the upper roof sections. Unbalanced snow loads and drift was checked to ensure the joists would not fail under such conditions. At first, sloping the joists was considered to help minimize the effect of unbalanced snow loads and drift, but it was discovered that the minimal slope that we could achieve failed to have an effect on the design. Ultimately,

> Page | 60 schreffler

the smaller joists were designed to be New Millennium 104 SPBW 738/391/230 (TL/LL/UL in plf) with a span of 110 feet and a top chord radius of 332 feet with a 7.5 inch seat depth and 5 rows of bridging. The larger joists are a New Millennium 164 SPBW 738/391/230 with a span of 110 feet and a top chord radius of 332 feet with a 7.5 inch seat depth and 5 rows of bridging.

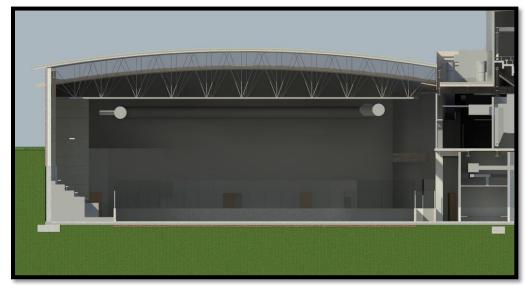


Figure 67. Transverse Section of the Community Rink Roof

Mechanical Loft Structural Design

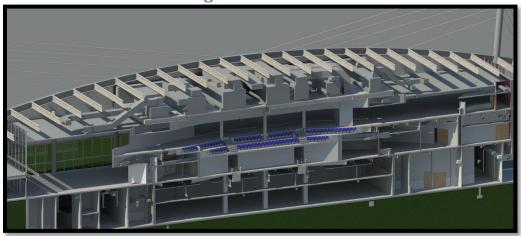


Figure 68. 3D Transverse Section of the Mechanical Loft

Having decided to move mechanical units to a loft underneath the roof and above the front lobby, the first question was how to support the large units. The exterior columns from the front lobby could be extended to support the loft on the exterior, but what was to be done on the interior. Five columns were extended from the Club Level floor up to the new Mechanical Loft, which was set at 16 feet above the Club Level to allow for adequate ceiling heights at the Club Level. The columns were added to support the loft and the best attempt possible to limit their impact on patron views was made.

Page | 61
babyak | sampson | schreffler

Three steel framing ideas were designed and analyzed and the framing that produced the least steel weight was selected. The same loads that were applied to the Mechanical Area (DL=130 psf and LL=150 psf) were used to design the Mechanical Loft. Due to the arena bowl, a large 10 foot cantilever was necessary. This accounted for larger sizes in the girders as compared to the infill beams. Once the loft structure was designed, extensive coordination between the structural and mechanical team member was required to ensure that the systems could work together.

Figure 69. Structural Design of the Loft Level from RAM

Mechanical System Redesign

At the beginning of the project, Lights Out Design was given a set of Design Development drawings from the design team. The mechanical drawings in the set show all 14 air handling units to the west end of the main bowl on the mechanical deck above the concourse level. The main duct runs from these units funnel into two shafts, one on the north end and one on the south. The ductwork drawings include single line drawn ducts with only the main duct runs sized. Figure X shows the event level single line ductwork drawing.

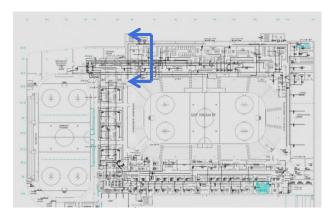


Figure 70. Event Level Single Line Ductwork

Page | 62
babyak | sampson | schreffler

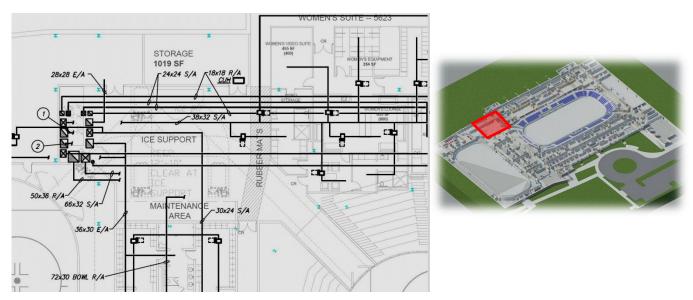
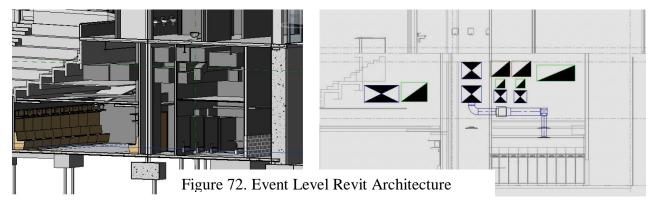
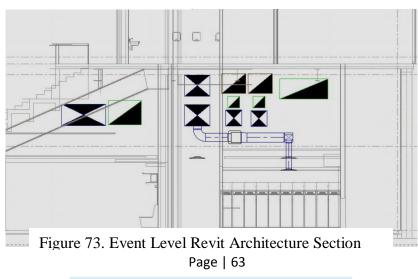
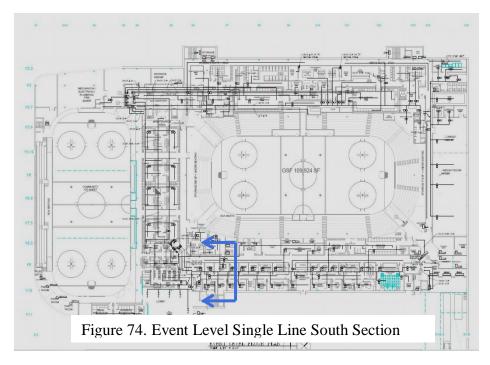




Figure 71. Single Line Ductwork Drawing Blow Up


Figure 72 shows the section shown in blue of the event level plenum space. All the ductwork is shown in the single line drawing in drawn into the Revit Architecture model.

babyak | sampson | schreffler

After drawing the ductwork into the event level Revit Architecture model the Revit Structure model was linked into the model. This ductwork configuration is clearly impossible as there is no room for piping or conduit; there is not even enough room for ductwork. Ductwork from this section will have to be removed in order for this plenum space to be coordinated. The section of the south event level plenum is cluttered but can be coordinated. There is definitely though not enough room for more ductwork.

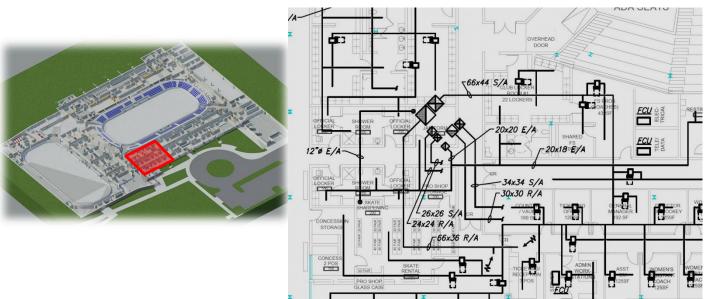


Figure 75. Event Level Single Line South Shaft

Page | 64
babyak | sampson | schreffler

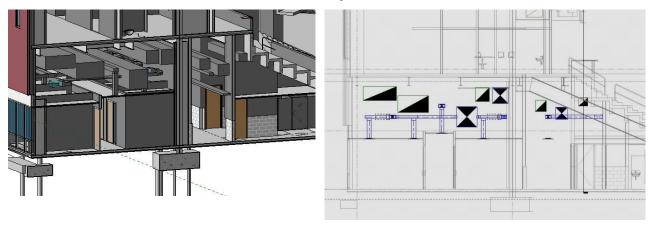


Figure 76. Event Level South Plenum Section

Lights Out Design concluded that at least two air handling units had to be removed from the mechanical deck in order for the coordination to work. If AHU-6 and AHU-7 are removed from the mechanical deck then the north plenum can be coordinated and the whole mechanical system can be coordinated. AHU-6 in the design development drawings sits on the mechanical deck and the supply ductwork runs the entire length of the arena before it starts to supply air to the workout rooms. The supply and return also clash with the structural rakers supporting the stands.

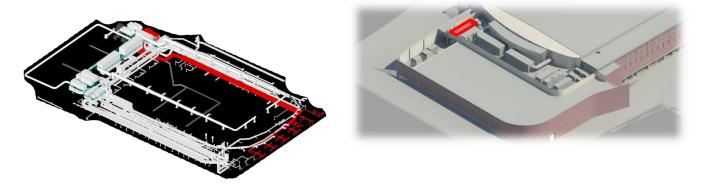


Figure 77. Design Development AHU-6 Layout

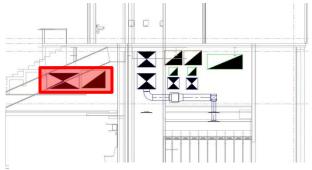


Figure 78. AHU-6 Clashing with Structural Rakers

Page | 65
babyak | sampson | schreffler

Lights Out Design got to see the final construction documents of the mechanical system two weeks before the final presentation. The team believes that the design team came to the same conclusion about AHU-6. Along with the design development drawings LOD was given a schematic Revit MEP model. The model is very basic showing maybe 10 percent of the total MEP system. In the model AHU-6 is floating in space and is not shown on the mechanical deck. The design team knew from the earliest design stage that AHU-6 needed to be moved to the east side of the arena. The final construction documents show AHU-6 on the event level by the loading dock.

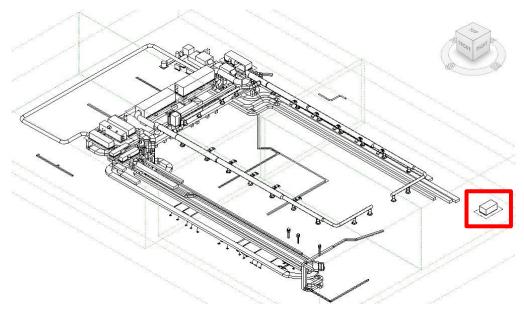


Figure 79. Schematic Revit MEP Model

In the schematic drawings AHU-7 and AHU-8 are not actually shown on the mechanical deck but on the concourse level directly above the northwest mechanical room. The supply duct run for AHU-7 runs halfway across the arena before it starts supplying are to the locker rooms, AHU-8 covers the first half.

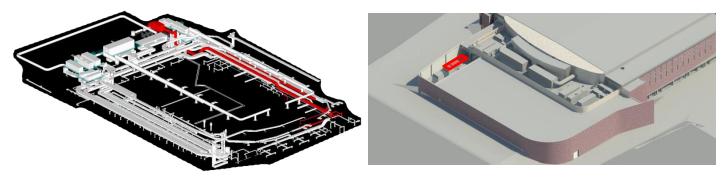


Figure 80. Schematic AHU-7 Ductwork Layout

Page | 66 babyak sampson schreffler

4.20.2012

PSU Ice Hockey Arena

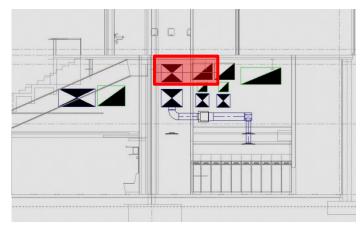


Figure 81. Schematic AHU-7 North Event Level

The design team combined AHU-7 and AHU-8 into one larger unit above the northwest mechanical room. This eliminated another two ducts from the north event level plenum. The team then moved the supply and return ductwork for AHU-13 and AHU-14, that supply the main locker rooms, to underneath the steel rakers. These changes removed four main duct runs from the plenum and allow for coordination.

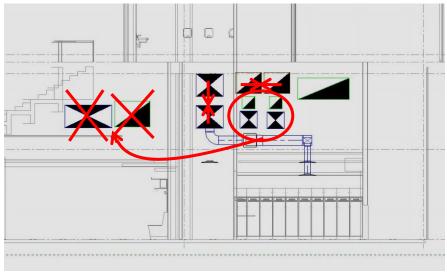


Figure 82. Design Team Construction Documents

In the LOD redesign AHU-6 and AHU-7 were moved to the mechanical loft to the east of the main bowl. The duct runs from the unit to the zone are now 30 feet instead of 300 feet. AHU-9 was moved from its location on the mechanical deck and moved in place of AHU-7 in order to free up space on the mechanical deck.

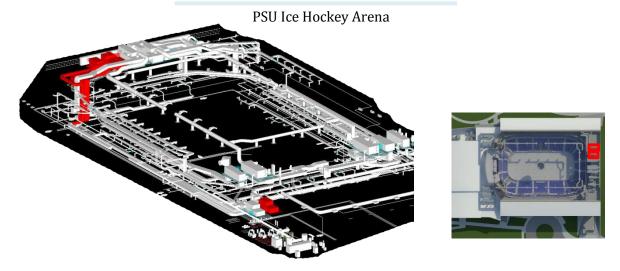


Figure 83. AHU-6 and AHU-7 Mechanical Loft

The mechanical loft was created in order to remove AHU-6 and AHU-7 from the mechanical deck and the event level north plenum. Once the mechanical loft was created it opened up an opportunity to move multiple units from the mechanical deck. Moving units allowed for shorter main duct runs and greater energy efficiency for the mechanical system. The first units that were redesigned were the main bowl air dehumidification units 10 and 11. In the schematic drawings two dehumidification air handling units located on the mechanical deck supply air to the main arena. The main supply ducts span the length of the arena over the stands from the mechanical deck. The return consists of three large return louvers, one below the mechanical deck and two located on the other side of the arena. The return louvers are located in the concourses outside of the main arena. Air is drawn from the main arena creating an air lock that keeps outside air from entering the arena. The air in the concourse is conditioned very differently than the air in the main arena.

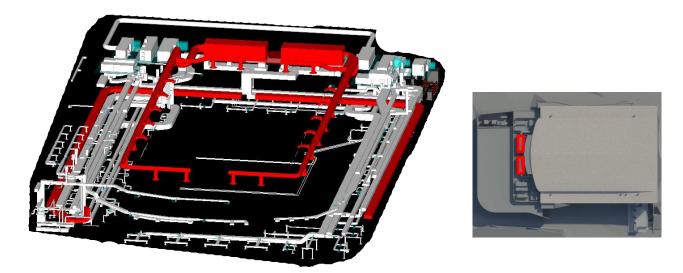


Figure 84. Schematic Main Bowl Ductwork Layout

babyak

Page | 68
sampson | schreffler

The redesign consists of moving AHU-11 to the mechanical loft. The main bowl units on either side are then split into two. The units are split into smaller units to fit in the smaller mechanical spaces. The units on either side are connected so at low loads one can be shut off in order to save energy and run the system more efficiently. Since the air in the redesign travels a much shorter distance the main supply ducts were reduced in size. The two return louvers on the side of the arena opposite the mechanical deck are now much closer to AHU-11. The 786 feet of 72x30 return duct is reduced to only 217 feet. The 72x30 duct is now no longer in the plenum space of the north and south event levels.

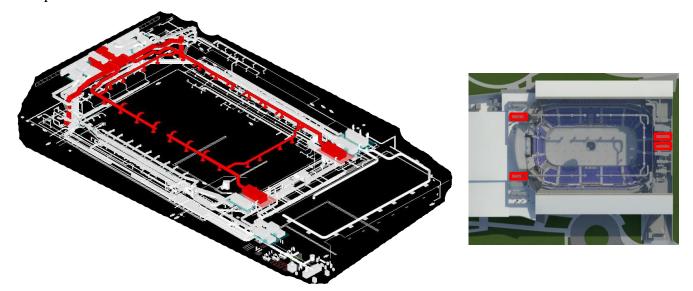


Figure 85. Main Bowl Ductwork Layout Redesign

The next unit that was moved to the mechanical loft was AHU-4. AHU-4 supplies air to the south main concourse. The idea behind moving AHU-4 is to reduce clutter in the concourse level plenum under the mechanical deck. Since the main duct is now on the other side of the arena the main duct in the concourse plenum space is now much smaller. This allows for easier coordination.

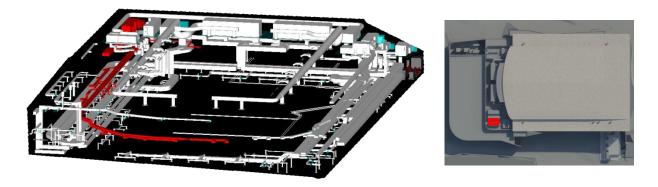


Figure 86. Schematic AHU-4 Ductwork Layout

Page | 69
babyak | sampson | schreffler

Figure 87: AHU-4 Ductwork Layout Redesign

Finally AHU-1 and AHU-2 were moved from the mechanical deck to the mechanical loft. AHU-1 and AHU-2 supply air to the kitchen and Mount Nittany room at the east end of the arena. Over 1200 feet of ductwork was removed from the design by moving these units to the other side of the arena.

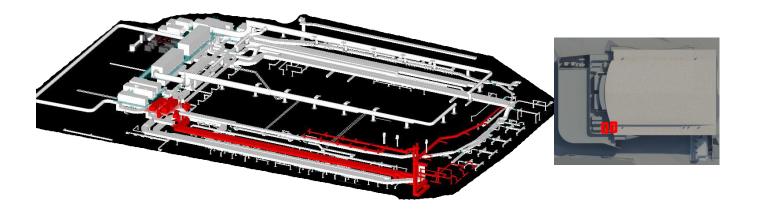


Figure 88. Schematic AHU-1 and AHU-2 Ductwork

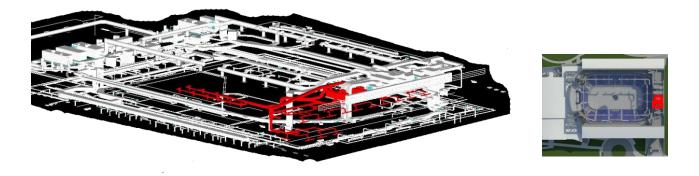


Figure 89. AHU-1 and AHU-2 Ductwork Layout

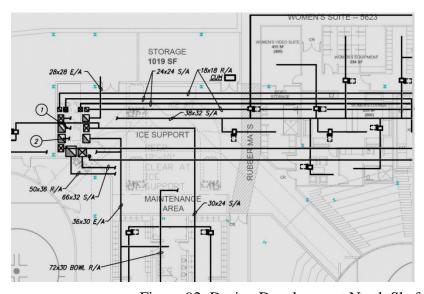
Page | 70
babyak | sampson | schreffler

Mechanical Redesign Cost Estimate

The team's MEP engineer proposed that a mechanical loft be constructed above the arena's main lobby so that 7 air handling units could be relocated in an attempt to increase the units' efficiency as well as reduce the amount of ductwork required for the systems. In order to justify building an entirely new mechanical loft, a takeoff estimate was conducted to determine the amount of ductwork that would be eliminated or sized down and the cost savings associated with those changes. The cost data applied to the ductwork take off estimates come from the 2012 National Plumbing & HVAC Estimator, and include material and labor costs. Ductwork takeoffs were performed using Revit Mechanical, for both the existing mechanical layout as well as the team's proposed relocation layout. It is important to note that the takeoffs only included ductwork that was associated with the affected 7 air handling units; ductwork associated with units not planning to be relocated was not counted. The takeoffs including total the total length of the ductwork required and the associated cost of that ductwork is summarized in Figure 90.

Existing vs Redesign Ductwork Totals			
	Length		Cost
Total Existing Ductwork:	3546.88	\$	1,853,464.96
Total Redesign Ductwork:	1301.67	\$	870,818.29
Cost Difference:		\$	982,646.67

Figure 90: Table comparing the total costs for the existing roof design and the redesigned cable stay roof system.


Because the MEP engineer for the team was able to reduce the total amount of ductwork by two-thirds and size down much of the remaining lengths of ductwork, relocating the air handling units can save the project \$982,646.67 in ductwork costs alone. Because the structure of the East Mechanical Loft (where these units would be relocated to) was already factored into the redesigned superstructure takeoff estimate (which yielded positive savings), there would be no real costs associated with construction of the mechanical loft itself. Therefore, implementing this proposed mechanical loft would save almost a million dollars by itself, without incurring any other costs, making this a fully worthwhile alternative to pursue.

Shaft Coordination

After the creation of the mechanical loft, the mechanical shafts from the mechanical deck can now be reevaluated. The single line ductwork drawing shows how cluttered the north and south shafts are in the schematic design. The single lines stemming from the shaft in the schematic drawings do not even fit. The lines from AHU-6 are cut in the drawing and reappear on the opposite end of the arena. The other lines that are cut in the single line drawing are the two 38x32 exhaust ducts for AHU-7 and AHU-8. The north shaft is impossible to coordinate with AHU-6 and AHU-7 on the mechanical deck. The south shaft is possible to coordinate but two structural beams are passing through it. The redesign removes ductwork from AHU-1 and AHU-2 from the south shaft. The beams are avoided in the redesign.

Figure 91. North and South Mechanical Deck Shafts

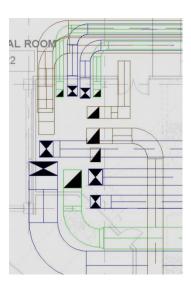


Figure 92. Design Development North Shaft

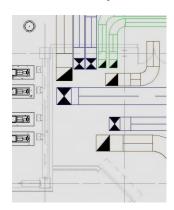


Figure 93. Redesign North Shaft Coordination

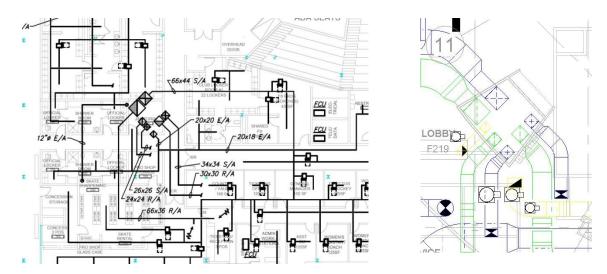


Figure 94. Design Development South Shaft Coordination

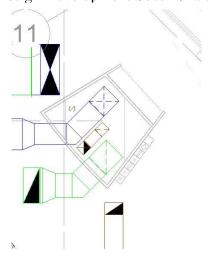


Figure 95. Redesign South Shaft Coordination

Page | 73
babyak | sampson | schreffler

Piping Model

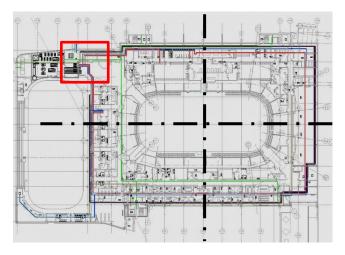


Figure 96. Event Level Piping Plan

The piping for the ice sheet originates from the ice plant in the northwest of the arena. Steam and chilled water from the campus plant enters the arena in the mechanical room next to the ice plant. The steam to hot water heat exchangers are located in the same mechanical room. The hot and chilled water pumps are also located in the northwest mechanical room. The main plumbing lines are modeled around the perimeter of the arena. The sanitary lines drop underground into the campus sanitary system. Domestic hot and cold water originates from the plumbing mechanical room next to the northwest mechanical room. The fire protection lines run through the central corridors of the arena. The fire protection standpipes are located in each of the main stairwells. The arena can be broken into four quadrants by drawing lines through the center of the main arena horizontally and vertically. Risers for the mechanical piping are located in each of the four quadrants up from the event level through to the club level.

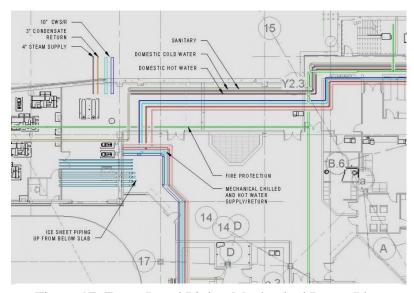


Figure 97. Event Level Piping Mechanical Room Plan

Page | 74
babyak | sampson | schreffler

The hot and chilled water supply and return for the redesign mechanical deck air handling units rise up to the mechanical deck from the concourse plenum. The gas for the desiccant wheel main bowl AHUs also rise from the concourse level up to the mechanical deck.

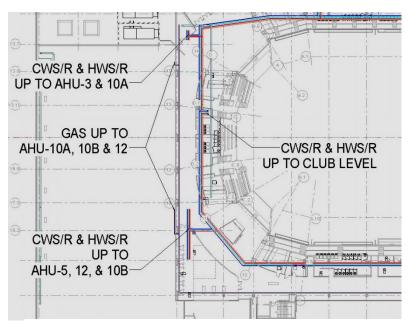


Figure 98. Concourse Level Piping Plan

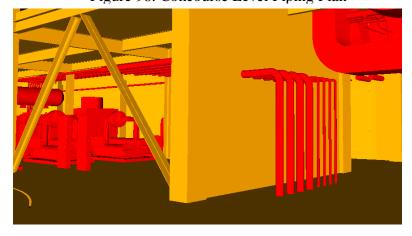


Figure 99. Ice Plant Piping From Mechanical Room To Ice Slab

Electrical Design

The electric power stems from two transformers outside the electrical room located just to the west of the ice plant. Conduit from the switchgear in the electrical room spreads to four electrical rooms on the event level located one in each quadrant. The conduit is run down the central corridors of the event level. The four electrical rooms of the concourse and club levels sit right above the event level electrical rooms. Next to the four electrical rooms are the tel/data

rooms. Tel/data cable is run on cable trays running low through the central corridors. The tel/data rooms also run straight up through the arena.

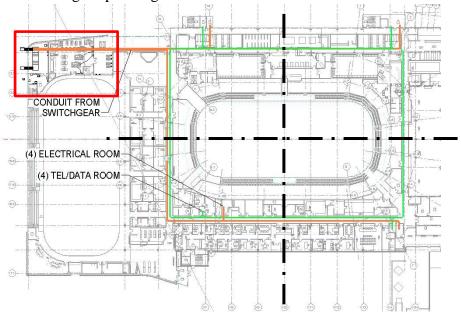


Figure 100. Conduit and Cable Tray Event Level Plan

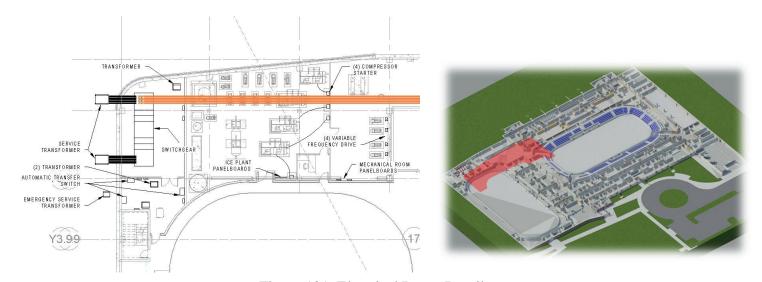


Figure 101. Electrical Room Detail

Figure 102 shows the wire layout for a typical suite. This layout could also apply to an office. The conduit for each room in the arena runs from the room to the nearest electrical room in the respective quadrants. Figure 102 also includes a section showing how the fan coil unit in each suite supplies air.

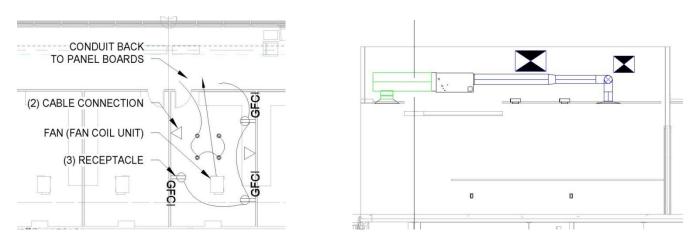


Figure 102. Wiring and Section Detail for Box

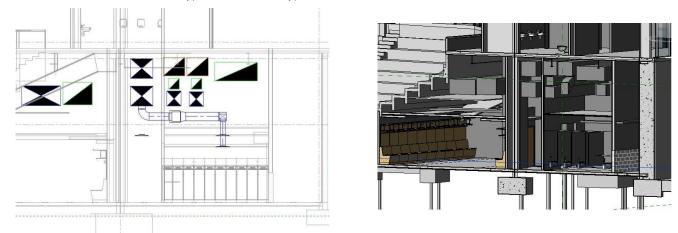


Figure 103. Design Development Event Level Ductwork

The design development drawings did not allow for complete coordination of the event level plenum on the north side of the arena. Lights Out Design was able to coordinate this plenum after moving the previously mentioned AHUs from the mechanical deck to the mechanical loft. Figure 104 revisits the plenum s shown in the single line ductwork drawings. Figure 104 illustrates the LOD coordination of this plenum. The conduit is run high just under the steel. Below is a space dedicated to mechanical piping and plumbing main lines and branches. The main ductwork runs fit underneath the piping. AHU-8 is now able to branch and supply air to both sides of the event level. The cable trays for tel/data cable run lowest for easy access and maintenance.

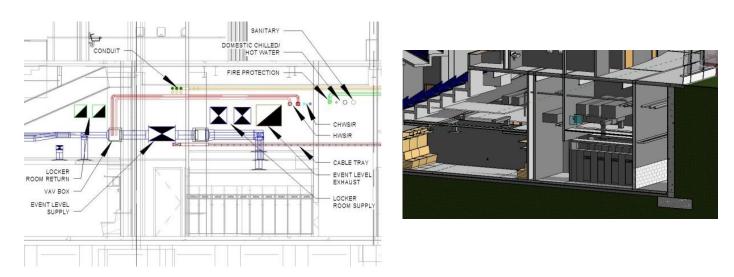


Figure 104. Event Level North Plenum Coordination

Mechanical Loft Shaft Coordination

Mechanical shafts had to be created in order for ductwork and piping to reach the mechanical loft. A pipe shaft is drawn in the design development drawings in the northeast quadrant. Piping to the mechanical loft taps into the pipes coming up through this shaft from the concourse level. The piping runs underneath the mechanical loft while the ductwork runs above the AHUs on the mechanical loft.

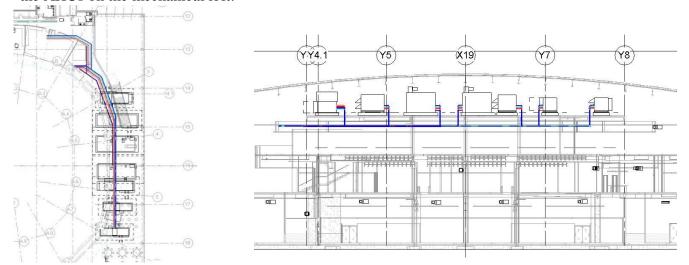


Figure 105. Mechanical Loft Piping Plan and Section

The piping shaft was expanded in the redesign to allow for ductwork to reach the event level from the mechanical loft.

		Page 78		
babyak	ı	sampson	ı	schreffler

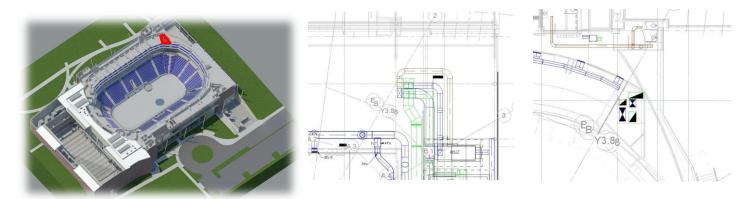


Figure 106. Mechanical Loft Ductwork Shaft Coordination

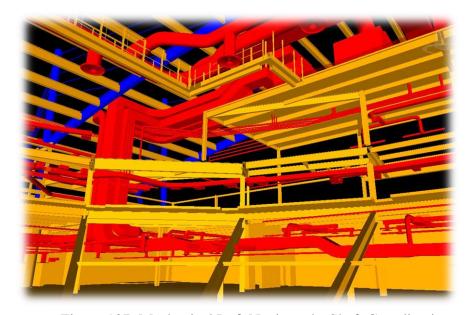


Figure 107. Mechanical Loft Navisworks Shaft Coordination

Main Concourse Plenum Coordination

The MEP model given to LOD at the beginning of the year shows only a small percentage of the total MEP system. The model does not include any exhaust ductwork or branch supply ductwork. In order to coordinate the arena the exhaust and branch ductwork was modeled into Revit MEP based on the single line ductwork design development drawings. The mechanical loft made coordination possible in the event level plenum. The next task was to coordinate the main concourse ductwork. Figure 108 shows the single line ductwork drawing. The 30x30 exhaust duct is drawn below the column line. The duct will not fit here because there are stub cantilevers holding up the stands in the way. Figure 109 illustrates the clash detected in

Navisworks. The exhaust duct had to be moved inside the column line but it still clashed with the supply branch. The duct had to be flattened as it did not fit as a 30x30 square.

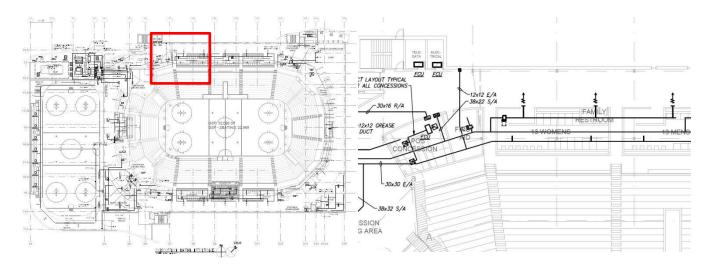


Figure 108. Mechanical Loft Navisworks Shaft Coordination

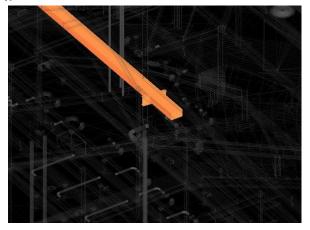
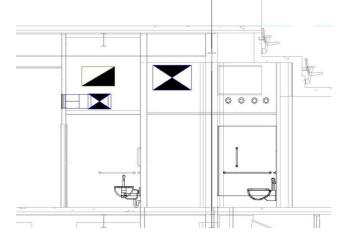



Figure 109. Exhaust Duct and Stub Cantilever Clash

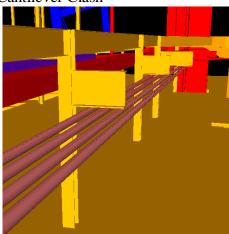
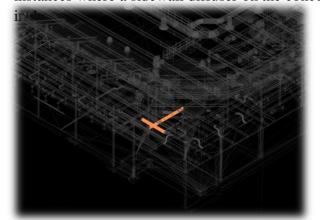



Figure 110. Lights Out Design Main Concourse Plenum Page | 80

The rest of the MEP system was coordinated with the structure using Navisworks Manage. The first clash detection run between the MEP and structure resulted in 595 clashes. In order to reduce this number going through the clashes one by one would be tedious and inefficient. The construction manager of LOD looked for areas with a large number of clashes and then informed the structural and MEP engineers. These areas would be evaluated and then clash detection would be run again. Each of these runs resulted in fewer and fewer clashes. A significant number of clashes were reduced when the structural engineer created openings in the slab and shear walls for ductwork to pass through shafts and walls. At this same instance the MEP engineer reviewed all ductwork clashes with the structural diagonal rakers supporting the stands. The goal of LOD was to get the number of clashes below 100. When the team got down to 133 it was necessary to view the clashes one by one as they were localized instances. Once the team reached 95, the clashes were viewed one by one to make sure there were no major issues. The final 95 were concluded to be easy fixes during construction. Figure X shows one of these instances where a sidewall diffuser on the concourse level is encroaching a column by only a few

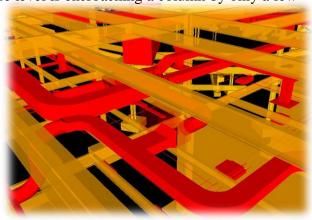


Figure 111. Clash Highlighting Major Area of Clashes

6	
Clash Runs	" of Clastics
1	595
2	540
3	494
4	457
5	215
6	177
7	131
8	100
9	95

Figure 112. Clash Detection History Page | 81

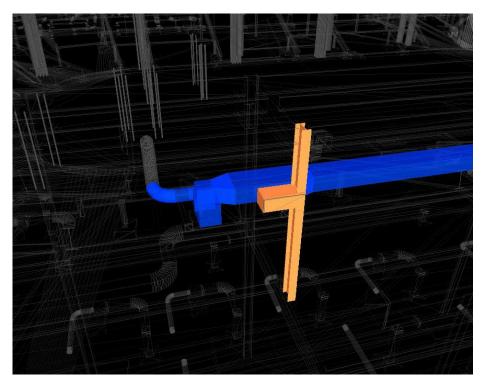


Figure 113. Minor Clash between Diffuser and Column

Navisworks Coordination

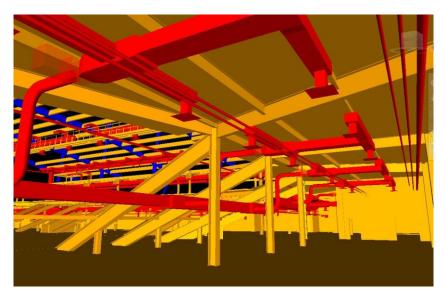


Figure 114. AHU-6 Weight Room Plenum Coordination as the ductwork and piping coordination in the weight room

Figure 114 shows the ductwork and piping coordination in the weight rooms. The main supply run from AHU-6 had to be kept low to avoid clashing with the diagonal rakers. The branch ductwork had to be kept high in order to accommodate the high ceiling heights of the weight room. Main piping lines run the perimeter of the arena.

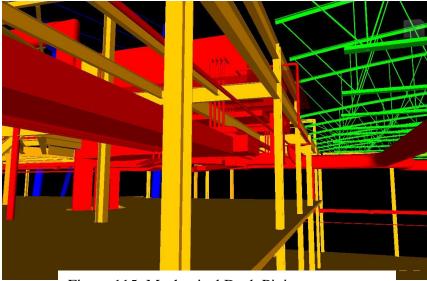


Figure 115. Mechanical Deck Piping

Figure 115 illustrates the mechanical piping rising from the concourse level up to the AHUs on the mechanical deck. The objects in green are the pan joists supporting the roof of the community rink.

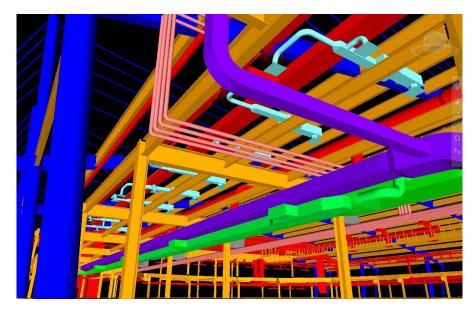


Figure 116. Main Concourse Plenum

babyak

Figure 116 is a screen shot of the main concourse coordination and its relationship to the club level. The blue is the masts and cables supporting the roof. The light blue is the fan coil units and ductwork supplying air to the suites. Purple is the exhaust ductwork for the main concourse and the branch up to the club level. Green is the supply branch supplying air to the north concourse on the concourse level. Pink is the mechanical piping branching up from under the stub cantilevers and then up to the club level.

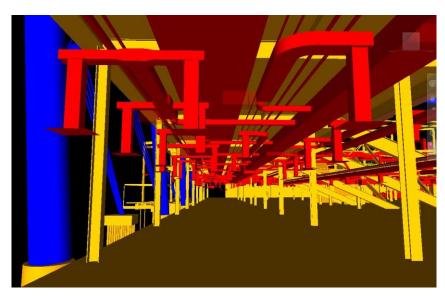


Figure 117. Event Level South Concourse Coordination

Figure 117 illustrates the south event level redesign coordination. The conduit runs high as well as piping. Ductwork is free to run above the plenum and branch in any direction. The cable tray runs low for easy maintenance.

Mechanical Loft Architectural Impact

Figure 118. South Mechanical Loft Shaft Coordination

The coordination of getting AHU-4 down to the concourse level from the mechanical loft proved to be difficult. It does not clash with the structure but there are multiple MEP clashes. Moving AHU-4 to the mechanical loft would require some architectural modifications.

Page | 84

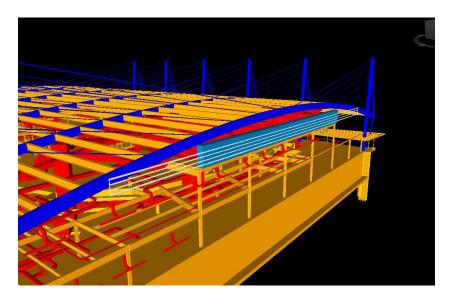


Figure 119. South Mechanical Loft Shaft

In order for the mechanical loft to work a plenum space would have to be created behind the front façade for the AHUs to tap into. For air to get into the plenum a louver would be placed across the front of the façade. With the metal panels and glass the grill could be implemented into the front façade. Convincing the architect of this significant change could prove to be difficult.

Community Rink Roof Redesign and Mechanical Loft Design Conclusion

The redesign of the community rink roof and the mechanical loft design was an extremely successful example of how BIM/IPD can benefit a project. By taking the single line mechanical drawings that the team was given and modeling the ductwork in Revit, the team was able to realize that there were major coordination issues in the event level plenum space. In coordination with the desire for a flexible community rink roof, the team was successfully able to create a mechanical loft that housed many air handling units that were relocated. The relocation of units saved close to a million dollars of duct expenses and allowed for daylighting to be infused into the community rink through an arched bowstring joist design.

Once the mechanical loft was created, the team was able to work through Navisworks to determine areas of clashing systems. Without this advantage, the arena could be constructed without realizing that there were multiple issues between the mechanical ductwork and the steel structure. Lights-Out Design was able to recognize these conflicts before they ever reached the construction phases. This would ultimately save time and money during the construction phase of the project. Overall, through the help of BIM programs and the IPD process, this redesign was extremely successful and feasible.

babyak

Page | 85
sampson | schreffler

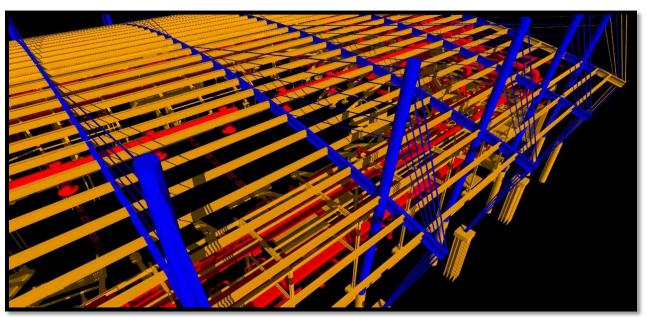
Page | 86

babyak |

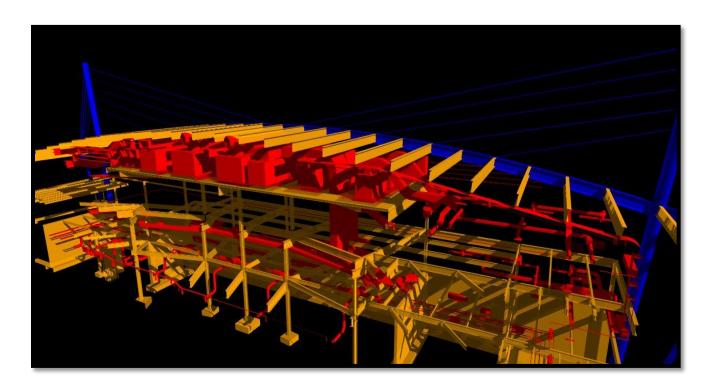
sampson

schreffler

Conclusion


Lights-Out Design has worked hard throughout the 2011-2012 academic year to achieve goals set in the fall semester. Through integrated project delivery and building information modeling platforms, we can say with confidence that a majority of our goals for this capstone project have been achieved.

The first major redesign centered on the long span roof. Throughout the semester, the team, especially the structural engineer and construction manager, worked closely to produce a cable-stayed roof that would span the entire arena. The team successfully designed a cable-stayed roof that reduced the structural depth of the roof, spanned the entire arena, and created an iconic structure that would become synonymous with Penn State hockey. However, this design came at a significant cost. In comparison to the existing design, the structure was over 8 million dollars more than the original design. After analyzing the team's results, we believe that a cable-stayed roof could be possible with further iterations and more detailed investigations.


The second major focus dealt with the arena's exterior façade. With the decision to design a cable-stayed roof, a newly designed lighter appearing façade was a necessity. A thermal analysis was conducted on the new façade to ensure that the arena would remain energy efficient. After conducting the analysis, it was discovered that the move to glass and metal panels would not impact the energy efficiency of the arena and would only cost \$85,701 over the life-cycle of the arena, a mere \$3,000 extra per year for 30 years. A new lighter façade is clearly feasible for the arena.

The final major redesign revolved around the community rink roof and the energy efficiency of the mechanical system. With the community rink being used extensively throughout the year, Lights-Out Design wanted to provide a greater aesthetic to the rink through an arched roof and infusing daylighting. In turn, after a preliminary analysis of the mechanical system, the team concluded that mechanical units had to be relocated. Through moving mechanical units to a mechanical loft, the team was able to save close to a million dollars in duct expenses and create flexibility in the design of the community rink roof. Navisworks analyses allowed the team to locate areas of clashes between engineering systems and resolve them prior to construction. Overall, this redesign was extremely successful specifically as a result of coordination using BIM and the integrated project deliver process.

After concluding this semester, the design team looked back and reflected on the work we had done. This project clearly showed how important it was to collaborate between disciplines. Without collaboration, we would never have recognized potential issues with the mechanical system and had the ability to design a unique structure. Throughout the process, it was very clear that one major person was missing: an architect. Without involvement from an architect, it was difficult to choose a design idea and some liberties were taken in redesigning the engineering systems. Overall, BIM and IPD can be extremely successful for complicated projects like a hockey arena. BIM and IPD allowed us to recognize conflicts early in the design process which would ultimately save a lot of time and headache through the construction phase.

Structural Appendix

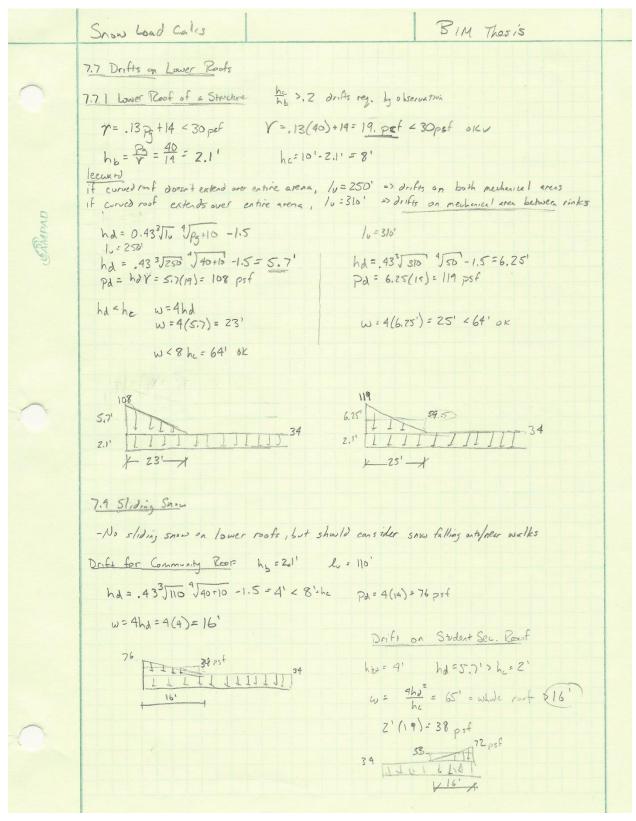
Appendix A. Structural MAE Requirements

To complete this thesis, coursework from multiple graduate level classes was necessary. Computer modeling knowledge gained from AE 597A was used to model both the cable-stayed roof system and lateral system model in SAP2000. In addition, computer modeling ideas from AE 597A were applied to the gravity structural system that was designed in RAM Structural System. In order to accurately model the lateral structural system, knowledge gained from AE 538 was used to determine appropriate sizes of the moment frames. In addition, knowledge gained from AE 537 was used to consider loading conditions that often cause structural failures. Unbalanced loads and drifting snow was checked throughout the structure to ensure the structural members were of adequate strength. This was especially important for the community rink roof which was supported by relatively unstable steel joists.

Ι

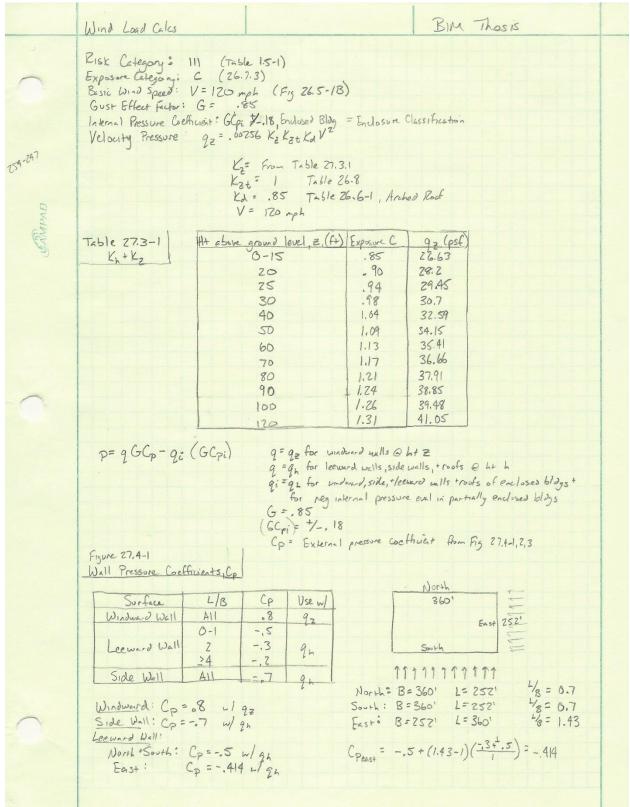
BIM Thesis Final Report

PSU Ice Hockey Arena

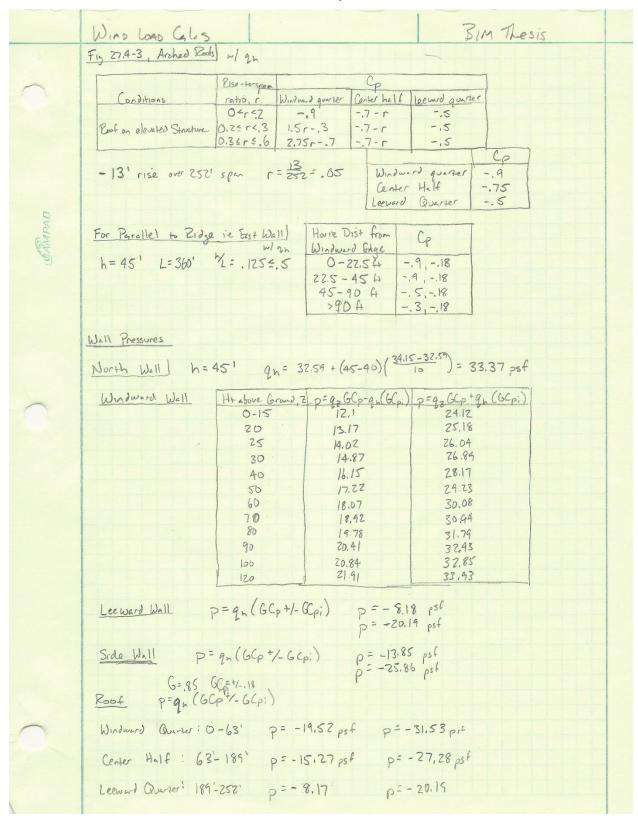

Appendix B. Structural Loads

Live	Loads						
Fixed Arena Seating	60 psf						
Arena Aisles	100 psf						
Mechanical Rooms	150 psf						
Light Storage	125 psf						
Event Floor & Truck Access (SOG)	350 psf						
Catwalks	40 psf						
All Others	100 psf						
Others							
Superimposed Dead Load	15 psf						

Snow Load Check

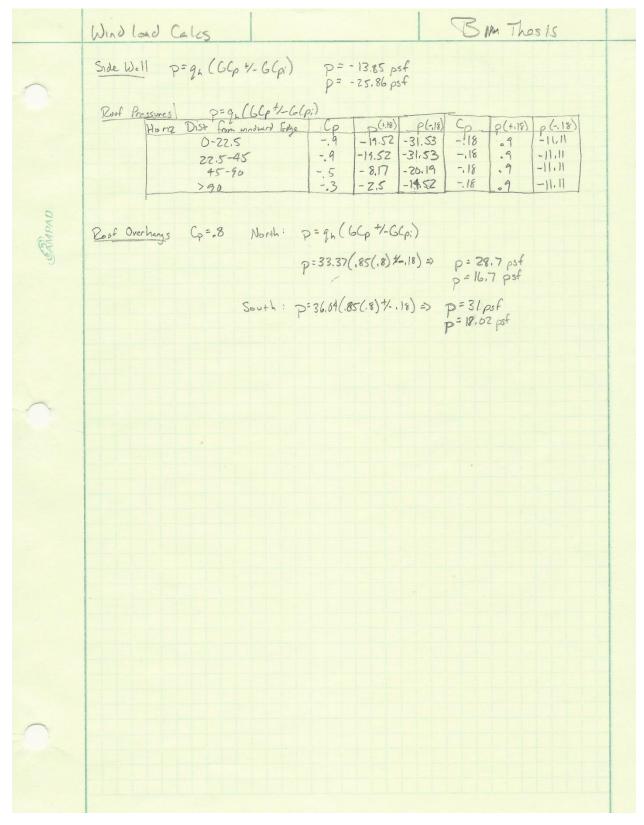

	SNOW LOAD CALLS ASCE 7-16 January 11, 2012 BIM Thesis
	73 Flat Roof Snow Load, Pf
	Pf=0.7CeCt Is P3
	Ct = 1.1 (Structure kept just above freezing ove to ice rink) T= 1.1 (Pick calence, III)
	Ce = 1.0 (Exposure C. Partially Exposed) Ct = 1.1 (Structure kept just above freezing one to rice rink) Is = 1.1 (Risk eategory III) Ps = 40 psf (Centre Country Code specified)
Q	Pf = (0.7)(1.0)(1.1)(1.1) (40) = 34psf + drifts
SA PA	7.3.4 Min Snow Load for Low-slope Roof, Pm
3	-curved roof where vert angle from exves to crown is less than 100 => 70
	Py > 20 psf - Pm = 20 (Is) = 20(1.1) = 22psf
	7.4 Sloped Boof Snow Loads, Ps
	Ps = Cs Pf
	7,4,2 Cold Roof Slope Factor, Cs
	Ct=1.1, unobstructed slipping surface = use dashed line Fig 7-26 slope=70
	Cs = 1.0 @ 7° slope Cs*= ,95@ 13° slope@ eaves
	$P_s = (1)(34) = 34 \text{ psf}$ $P_s = .95(34) = 32 \text{ psf}$
	7.45 lee Dans : lieles Along Euros - if R<30 ft2 hr °F/BTV unvertleted or R<20 ft2 hr °F/BTV ventilated
	-load on overhang = 2pt = 2(34) = 68 psf only applied on overhang w/ dead loads on rest
	7.6.2. Unbalanced Snow Leads for Curved Roof
	Fig 7-3 Case 1: Slopes@ exves 4300
	32psf 34psf Balanced Load
	Exus, 36' Crown 36' Euros
	Spt= 17pst Zpr(s=65psf Ce Unbalanced Load
1	
	Eaves Coun Eaves

Page | 91



Page | 92

Wind Loads

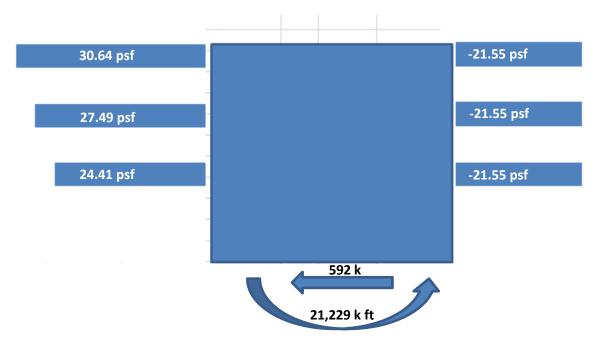

Page | 93

Page | 94

	all Ht above	ground, 3 p	=9 = 66pi - 9, (S(p:) p=9266p;+92 Z4.6	(6Cpi)
	0-1	15	11.62	Z4.6	
	20		12.69	25.66	
	75		13.54	26.52	
	30		14.39	27.37	
	40		15.67 16.74	28.65	
HIT	60		17.59	30.56	
	70		18.44	31.42	
	80	1	15.25	32.27	
	91	0	19.93	32.41	
	10		20.36	33:33	
	17	20	21.43	34.4	
Leeward Wall	p=qn(60	p +/ Gcp.)	p=-8.83 p=21.80	psf psf	
SideWall	P=qn (GCp+	7-G(p;)	P=-14,96 P=-27,931	psf	
Roof p=	9n (GCp 4-6Cpi)				
			1 0 0 A	-21 6/	27/1
Windward Qua		P = -2	1.08 psf	p = -34,06 psf	
Windward Qua Center Half:	der: 0-63'	P = -16	.49 psf	p =-34.06 psf p =-29.46 psf	-27.56 psf -73.83 psf
Windward Qua Center Half: Leeward Quar	ter: 0-63' 63-185' ter: 189-252'	P = -16 P = -8.	.49 psf		
Windward Qua Center Half: Leeward Quar	der: 0-63'	P = -16 P = -8.	.49 psf	P=-29.46 psf	
Windward Qua Center Half: Leeward Quar	ter: 0-63' 63-185' ter: 189-252' 1=45' 9h=3	P = -16 $P = -8$.	.49 psf 93 psf	p=-29.46 psf p=-21.86 psf GCpi-qx (GCpi)	
Windward Qua Center Half: Leeward Quar East Wall h	ter: 0-63' 63-185' ter: 189-252' 1=45' 9h=3	P = -16 $P = -8$.	.49 psf 93 psf .(6Cp:) p=92	P=-29.46 psf	
Windward Qua Center Half: Leeward Quar East Wall h	ter: 0-63' 63-185' ter: 189-252' 1=45' 9h=3 Ht above grand 0-15' Za 25	P = -16 $P = -8.$ 33.37 psf $9 = 9260p; -9260p; -92$.49 psf 93 psf .(6Cp:) p=92	p=-29.46 psf p=-21.86 psf 6Cpi-qx (6Cpi) 24.12	
Windward Qua Center Half: Leeward Quar East Wall h	ter: 0-63' 63-185' ter: 189-252' 1=45' 9h=3 Ht above grand 0-15' 20 25 30	P = -16 P = -8. 83.37 psf 9=9=6Cp;-9 12.1 13.17 14.02 14.87	.49 psf 83 psf (66p:) p=92	p=-29.46 psf p=-21.86 psf 6Cp; -qx (6Cp;) 24.12 25.18 26.04 26.84	
Windward Qua Center Half: Leeward Quar East Wall h	Ht above grand 0-18 The state of the state	P = -16 P = -8. 83.37 psf 9 = 9= 6Cp; -9 12.1 13.17 14.02 14.87 16.15	.49 psf 83 psf (GCp:) p=92	ρ=-29.46 psf ρ=-21.86 psf 6Cpi-qx (6Cpi) 24.12 25.18 26.04 26.89 28.17	
Windward Qua Center Half: Leeward Quar East Wall h	Ht above grand 0-18 The state of the state	P = -16 P = -8. 33.37 psf 9 = 92 GCp; -9 12.1 13.17 14.02 14.87 16.15 17.22	49 psf 83 psf (6Cp:) p=92	ρ=-29.46 psf ρ=-21.86 psf 6Cpi-qx (6Cpi) 24.12 25.18 26.04 26.89 27.17 24.23	
Windward Qua Center Half: Leeward Quar East Wall h	Ht above grand 0-18 1-45 1-	P = -16 P = -8. 33.37 psf 9 = 92 GCp; -9 12.1 13.17 14.02 14.87 16.15 17.22 18.07	.49 psf 83 psf (6Cp:) p=92	ρ=-29.46 psf ρ=-21.86 psf 6Cpi-qx (6Cpi) 24.12 25.18 26.04 26.89 27.17 24.23	
Windward Qua Center Half: Leeward Quar East Wall h	ter: 0-63' 63-185' ter: 189-252' 1=45' 9h=3 Ht above grand 0-15' 25 30 40 50 60 70	P = -16 P = -8. 33.37 psf 9=9266pi-9 12.1 13.17 14.07 14.87 16.15 17.22 18.92	.49 psf 93 psf ,(GCp:) p=92	p=-29.46 psf p=-21.86 psf GCpi-qx (GCpi) 24.12 25.18 26.04 26.89 28.17 29.23 30.08 30.94	
Windward Qua Center Half: Leeward Quar East Wall h	Ht above grand 0-18 1-45 1-	P = -16 P = -8. 33.37 psf 9 = 92 GCp; -9 12.1 13.17 14.02 14.87 16.15 17.22 18.07	.49 psf 93 psf .(GCp:) p=92	p=-29.46 psf p=-21.86 psf 6Cpi-qn (6Cpi) 24.12 25.18 26.04 26.89 28.17 24.23 30.08 30.14 31.79	
Windward Qua Center Half: Leeward Quar East Wall h	Ht above grand 0-18 1-45 1-45 1-45 1-45 1-45 1-45 1-45 1-45 1-45 1-45 1-50 1-	P = -16 P = -8. 33.37 psf 9 = 92 GCp; -9 12.1 13.17 14.02 14.87 16.15 17.22 18.92 14.78	49 psf 83 psf (GCp:) p=92	p=-29.46 psf p=-21.86 psf GCpi-qx (GCpi) 24.12 25.18 26.04 26.89 28.17 29.23 30.08 30.94	

Page | 95

Page | 96


South Wall Wind Forces

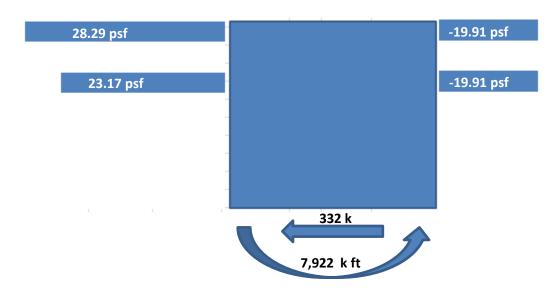
Criteria		N-S Direction					
Arena		Floor	Height (ft)	Kz	qz (psf)	p (windward) (psf)	p(leeward) (psf)
Gf	0.85	Roof	61.75	1.14	35.627	30.64	-21.55
C _p (Windward)	0.8	Club Level	36.42	1.02	31.961	27.49	-21.55
C _p (Leeward)	-0.5	Main Conc.	20.75	0.91	28.389	24.41	-21.55
Gcpi	0.18	Entry	0	0	0.000	0.00	0.00

N-S Direction

Floor	Height (ft)	Height Below (ft)	Height Above (ft)	Trib Area (ft2)	Story Force (K)
Roof	61.75	25.33	0	3799.5	116.41
Club Level	36.42	15.67	25.33	9676	265.96
Main Conc.	20.75	20.75	15.67	8595.12	209.85
Entry	0	0	0	0	0.00

Base Shear (K) 592
Overturning moment (k ft) 21229

Page | 97


North Wall Wind Forces

Criteria		N	N-S Di	rection			
Arena		Floor	Height (ft)	Kz	qz (psf)	p (windward) (psf)	p(leeward) (psf)
Gf	0.85	Roof	41	1.05	32.901	28.29	-19.91
Cp (Windward)	0.8	Club Level	15.67	0.86	26.948	23.17	-19.91
Cp (Leeward)	-0.5	Main Conc.	0	0	0.000	0.00	0.00
Gcpi	0.18	Entry	0	0	0.000	0.00	0.00

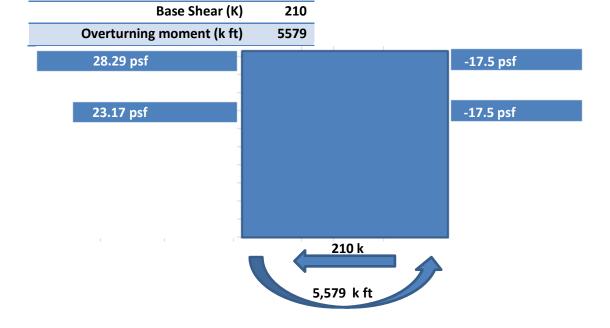
N-S Direction

Floor	Height (ft)	Height Below (ft)	Height Above (ft)	Trib Area (ft2)	Story Force (K)
Roof	41	25.33	0	3799.5	107.51
Club Level	15.67	15.67	25.33	9676	224.24
Main Conc.	0	0	15.67	3698.12	0.00
Entry	0	0	0	0	0.00

332	Base Shear (K)
7922	Overturning moment (k ft)

Page | 98

babyak | sampson |

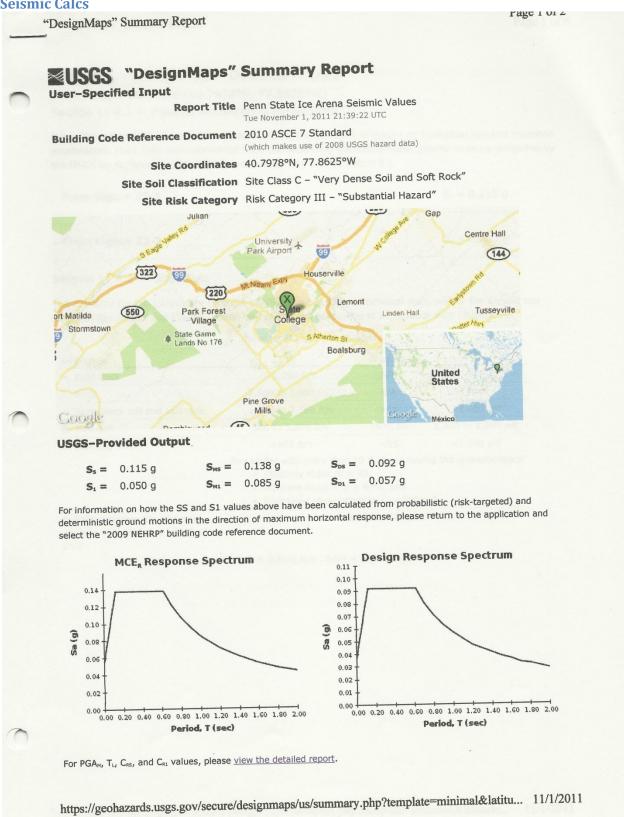

schreffler

East/West Wall Wind Forces

Criteria	eria N-S Direction						
Arena		Floor	Height (ft)	Kz	qz (psf)	p (windward) (psf)	p(leeward) (psf)
Gf	0.85	Roof	41	1.05	32.901	28.29	-17.50
C _p (Windward)	0.8	Club Level	15.67	0.86	26.948	23.17	-17.50
C _p (Leeward)	-0.414	Main Conc.	0	0	0.000	0.00	0.00
Gcpi	0.18	Entry	0	0	0.000	0.00	0.00

N-S Direction

Floor	Height (ft)	Height Below (ft)	Height Above (ft)	Trib Area (ft2)	Story Force (K)
Roof	41	25.33	0	3191.58	90.31
Club Level	15.67	15.67	25.33	5166	119.72
Main Conc.	0	0	15.67	1974.42	0.00
Entry	0	0	0	0	0.00



Page | 99

babyak | sampson

schreffler

Seismic Calcs

Page | 100

babyak sampson schreffler

signMaps" Detailed Report

Page 6 of 6

Section 11.6 — Seismic Design Category

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

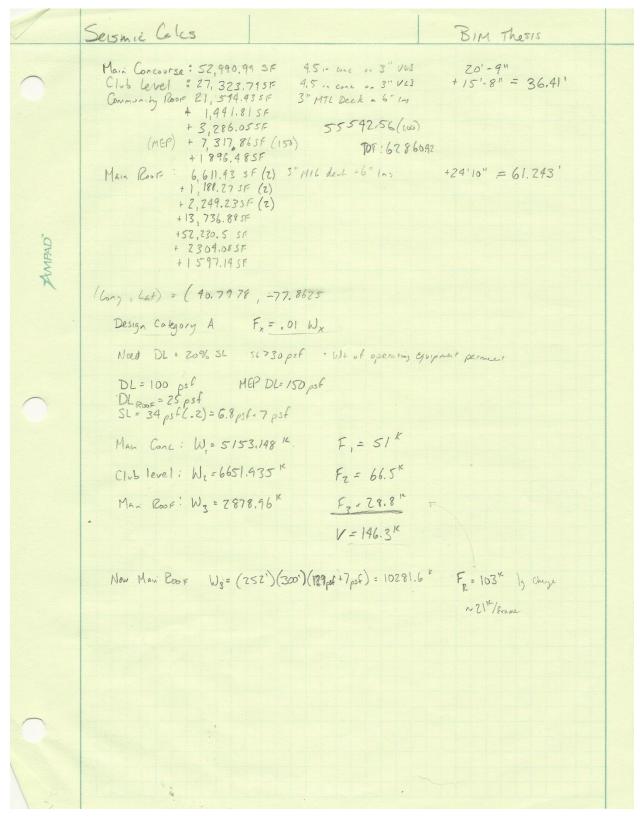
	RISK CATEGORY							
VALUE OF S _{DS}	I or II	III	IV					
S _{DS} < 0.167g	А	Α	А					
0.167g ≤ S _{ps} < 0.33g	В	В	С					
0.33g ≤ S _{ps} < 0.50g	С	С	D					
0.50g ≤ S _{ps}	D	D	D					

For Risk Category = III and S_{DS} = 0.092, Seismic Design Category = A

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

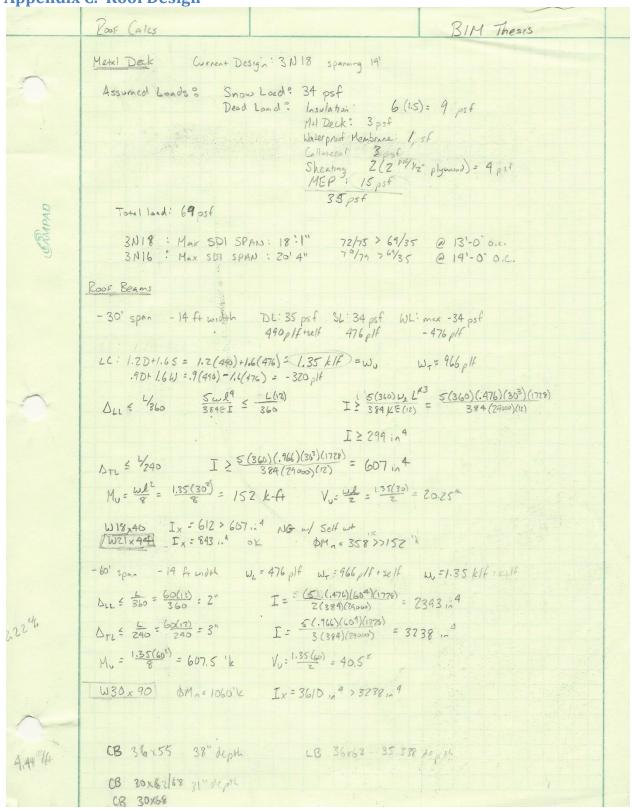
	RISK CATEGORY							
VALUE OF S _{D1}	I or II	III	IV					
S _{D1} < 0.067g	Α	Α	А					
0.067g ≤ S _{D1} < 0.133g	В	В	С					
0.133g ≤ S _{D1} < 0.20g	С	С	D					
0.20g ≤ S _{D1}	D	D	D					

For Risk Category = III and S_{D1} = 0.057, Seismic Design Category = A


Note: When S_1 is greater than 0.75g, the Seismic Design Category is \mathbf{E} for buildings in Risk Categories I, II, and III, and \mathbf{F} for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = A

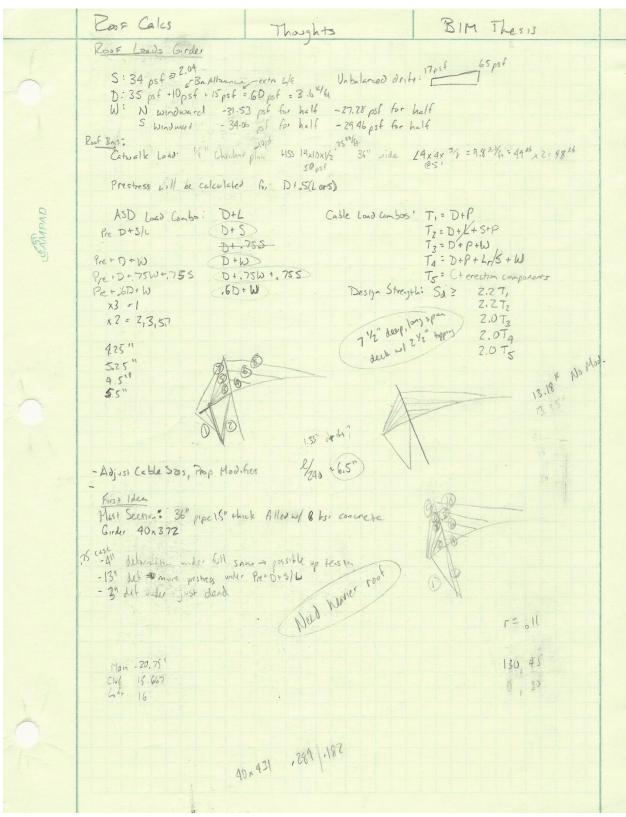
Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.


https://geohazards.usgs.gov/secure/designmaps/us/report.php?template=minimal&latitude... 11/1/2011

Page | 101

Page | 102

Appendix C. Roof Design

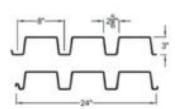

Page | 103

		1 30 fee Hockey Michael	
	ROOF Cales		BIM Thesis
	Heavier Ross SL = 34 psf DL = 82 psf + 30 MEP + 5 rosh 3C16 Mark Span 11"0" 3C18 Mark Span 11"0"	Noncomposite delli	Co-posite 34+35=69pf 3N1 19@ 12' 1477>69pst
CAMPAD	499.5 psf		1.4D = 1.80 194+
	$\Delta_{TL} \le \frac{L}{240} = \frac{60(17)}{240} = 3^{\circ}$ $M_0 = \frac{2.14(60^2)}{8} = 963^{\circ}/k$ Linds on Girder D: 117 +12 = 1: 34 psf =	1750'k > 963'k 129 psf = 7.74 5/4	778) = 5567 m ⁴ W33 x 118 5400>5567 N6 W/ self wt W33 x 130) 6710 75567 L> 12 ps f
		4 - 4 4.75 - 3.8 5.25 - 1.2, 7 5.5 - 5.6	#2" 2" thick 10 ksi can W40 x 513 grow - Too much defl

Page | 104

BIM Thesis Final Report

PSU Ice Hockey Arena



Page | 105

VULCRAFT

3 N, NI, NA, NIA

Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-0 ICC ER-3415 FM Global Approved²

Interlocking side lap is not drawn to show actual detail.

SECTION PROPERTIES

Deck type	Design	441						
	thickness in:	pel	in the	5 ₀	in the	S _c	V, Fed	P _y to
1422	0.0296	2.26	0.660	0.962	0.894	0.438	2232	33
N20	0.0358	2.71	0.048	0.501	1.079	8.552	3287	- 33
N19	0.0418	3.15	1.045	0.597	1.260	0.059	4217	33
NIB	0.0474	3.56	1.238	0.688	1,430	0.749	4771	33
1416	0.0098	4.46	1,683	0.800	1.807	0.944	5900	33

ACOUSTICAL INFORMATION

Deck Type	1	Nose Reducto					
	125	256	500	1000	2000	4000	Coefficient'
SNA, SNIA	.18	39	.88	.93	58	.39	0.70

¹ Source: Riverbank Acoustical Laboratories. Test was conducted with 1.50 pcf liberglass belts and 2 inch polysocyanurate foam insulation for the SCI.

Acoustical deck (Type 3 NA, NIA) is particularly suitable in shuchures such as auditoriums, echools and theses where sound control is desirable. Acoustic perforations are located in the vertical webs where the load carrying properties are negligibly affected (less than 5%).

hert, non-organic glass fiber sound absorbing batts are placed in the risi openings to absorb up to 70% of the sound striking the deck.

Bats are field installed and may require separation.

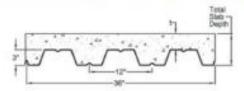
VERTICAL LOADS FOR TYPE 3N

No. of Spores	Deck	Mos. SIDI Covet.		Allowable Total (PSP) (Lossi Causing Defection of L(PH) or 1 inch (PSP) Span (R-In) jet to str of expects										
	Type	Span	10-0	10-6	11-0	11.4	12-0	12-6	13-0	13-6	16-0	14-6	154	
	N22	10.7	60743	46/37	42/32	38128	36 / 25	32132	307.20	287.18	26/16	24/14	2211	
	N20	13-2	66 / 56	90748	55 / 42	50177	46732	42.128	29725	36123	34 / 20	317.18	29.19	
	N18	14-7	79 / 68	71/20	65/81	59748	55/40	55135	47/31	45738	49 / 25	37 / 22	35/20	
100	N18	15-11	91781	82170	T5781	69 / 53	03/47	58 (42	54/37	50/33	407.33	43 / 37	40/2	
	.505	184	108/110	107 / 1/5	977.60	88.773	82/64	75/56	70/50	557.45	90/40	36736	52/3	
	N22	131-8	59 / 122	51 / 105	4T/92	43/80	39/71	38160	34755	31.758	29/44	27.740	25/3	
	N20	19-6	72 / 152	667121	807 this	567.100	50 / 68	46.179	63/68	40762	377.95	34750	32/4	
2	NIS	161-11	867 182	767 167	211 137	65 / 128	601108	55.193	61/83	47.174	447.99	41/60	38/5	
200	N18	185-1	88/211	89 / 182	81 / 158	747.150	68 / 122	63 / 108	58756	547.86	50 / 77	47 / 69	4415	
	1915	2014	123 / 278	1127238	102 / 207	93 / 181	66,7199	79/141	73 (125	687 112	68 (100	59 / 50	55/80	
	N22	131-6	.00/98	04/33	59/72	83/83	69 / 55	45.149	42745	30 / 38	36735	200000000000000000000000000000000000000		
	N20	19:4	80 / 110	817100	767.90	68/78	63/10	SALES	59754	50/48	467.63			
3	N19	195-11	107 / 143	977123	89 / 107	81/94	76 / 83	69173	64768	1007.08	66 / 52			
	N18	18-1	102 / 188	1017,143	1017124	027100	85/96	78184	72 / 76	67 / 67	637.60			
	N16	29:4	154 / 216	139/100	1277162	1987 142	107 / 129	99 / 111	91796	85788	79779			

Notes: 1, Minimum exterior bearing length required is 1.50 inches. Minimum interior bearing length required is 3.00 inches.

If these minimum lengths are not provided, with cripping must be checked.

2. FM Global approved numbers and suars similable on page 21.


10

Page | 106

babyak sampson schreffler

VULCRAFT

3 C CONFORM

Interlocking side lap is not drawn to show actual detail.

MAXIMUM CONSTRUCTION CLEAR SPANS (S.D.I. CRITERIA)

Total Slab	1073965	WEIGHT		NW CONCRETE N=0 145 PGF	THE OWNER	WEIGHT		Nº14 110 PCF	i.
Depth	DECK	PSF	1 SPAN	2 SPAN	3 SPAN	PSF	1 SPAN	2 SPAN	3 SPAN
2000	3022	. 56	8-4	9-10	10:1	43	6-3	10-9	13-8
6	3C20	67	9-8	71 - 10	12:3	-43	10-9	13-1	13-6
(90.00)	3018	67	11-10	14-2	14-2	84	12-11	16-2	15-2
20/23/21	3016	58	12-2	14-4	14-10	45	13-7	16-9	16-0
	3022	62	8-0	8-3	0-4	45	8-11	10-0	11-4
8.5	3020	63	9-3	11-5	11-9	48	10-4	12-7	13-0
(0=0.50)	3018	63	13-4	13-18	19-10	-89	12-7	14-9	14-19
2000000 (II.)	3016	64	11:7	13-10	14-3	49	13-0	16-2	15-7
	3C22	66	7-9	7-8	8-8	52	67	9.4	10-8
y .	3020	60	9-0	10-11	11-4	53 53	9-11	12-2	12-7
0 = 4.001	3018	69	15+8	13-3	13-6	53	12-3	14-5	14-5
T-1000	3016	70	11-4	12-4	13-9	. 54	12-6	14-9	15-3
	3C22	76	7-7	7-2	0-2	- 57	6-3	8-10	15-3 10-0
7.5	3G20	75	0.9	10-2	11-0	87	9-7	11-10	12-2
(814.50)	3018	75	10-9	12-10	13-3	58	11-0	14-2	14-2
4.7	3016	. 76	15-0	12-11	13-4	29	12-1	14-3	14-9
1,500	5022	80	7-5	6-9	7- B	99	6-0	5-4	9-5
0	3C20	01	8-7	9-7	10-6	62	9-3	11-6	11-10
0×5.001	3018	B1	10-6	13-5	12-10	62	21-5	13-10	13-11
	3016	62	10-9	12-6	12-11	63	11-6	13-11	14-4

REINFORCED CONCRETE SLAB ALLOWABLE LOADS

State Depth	REINFORCEM	Superimposed Linform Lead Linf) - 3 Span Condition Clear Span (R. in.)										200	
	W.W.F.	As	6-6	7-0	7-8	8-0	8-6	9-0	5-8	10-0	10-8	11-0	11-6
11/258	6045-W2-90W2-9	0.058*	125	108	100000	DESCRIPTION OF				10000		7000000	
6	4X4-W2.5XW2.9	0.087	185	160									
p+3.001	4064-W4-000W6LG	0.120	246	212									
	6048-W2.900W2.9	0.058*	154	133	110	102							
5.5	404-W2.00W2.9	0.067	229	198	172	181							
(\$43.50)	4X4-W4.0XW4.0	0.120	306	264	230	202							
	6X8-W2.0XW2.9	0.056"	183	158	138	121	107	96					
7	4X4-W2.9XW2.9	0.087	273	235	205	180	150	142					
p=4.00)	40K4-W4,000W4.0	0.120	366	216	275	242	214	191					
	4044W2.500W2.9	0.087*	316	273	238	209	185	165	148	134	121		
7.8	4X4-W4.0XW4.0	0.120	400	368	320	281	249	222	200	180	163		
24.50	484-W5.00W5.0	0.150	400	400	392	345	306	272	245	221	200	-	
3-33-1	4004-W2:90W2:9	0.087*	360	310	270	238	210	199	168	152	138	136	- 11
8	4004-W4-000W4.0	0.120	400	400	365	321	284	254	228	205	196	170	11
0~5.000	4044-WS-000WS-0	0.150	400	400	400	295	350	312	280	253	220	200	11

- NOTES: 1. "As does not meet A.C.I. criterion for temperature and shrinkage.

 2. Recommended conform types are based upon S.D.I. criteria and normal weight concrete.

 3. Superimposed loads are based upon three span conditions and A.C.I. moment coefficients.

 4. Load values for single open and double spans are to be reduced.

 5. Valuratis painted or palvenized form dock can be considered as permanent support in most building applications. See page 23.

 If uncoafied form dock is used, deduct the weight of the slab from the allowable superimposed uniform loads.

 6. Superimposed load values shown in bold type negure that mesh be droped. See page 23.

34

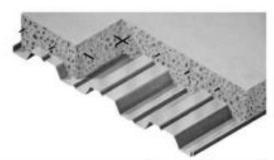
NON-COMPOSITE

Page | 107

babyak

sampson

schreffler


4.20.2012

NON-COMPOSITE

PSU Ice Hockey Arena

SLAB INFORMATION

Total Slab	Theo, Congy	ste Volume	Recommended
Depth, in.	Yrd" / 100 ft"	877.85	Welded Wire Fabric
- 5	1.06	0.292	6x6 - W1.4xW1.4
5 1/2	1.23	0.333	6x6 - W1.4x0V1.4
. 6	1.39	0.375	8x6 - W1,4xW1,4
6 1/4	1.47	0.396	6x6 - W1.4xW1.4
6 1/2	1.54	0.417	6x6 - W2.1xW2.1
7	1.70	0.458	6x6 - W2.1xW2.1
7.114	1.77	0.479	6x6 - W2.1xW2.1
7 1/2	1.85	0.500	6x6 - W2.1xW2.1

VULCRAFT

SECTION PROPERTIES

Deck Type	Design	Deck		Section I	reporties			
	Thickness in.	Weight psf	in"/ft	In In In	S _e in ^t /ft	S _i , in ¹ /8:	V, bs/t	F,
3C22	0.0295	1.77	0.730	0.729	0.414	0.426	1528	50
3C20	0.0358	2.14	0.920	0.919	0.534	0.551	2698	50
3C18	0.0474	2.84	1.264	1,252	0.770	0.797	4729	50
3016	0.0598	3.58	1,580	1,580	1.013	1.013	5309	40

ALLOWABLE UNIFORM LOAD (PSF)

TYPE	NO. OF	DESIGN				a cana	044-444		LEAR SE	AN (ft-in	Marine.	ULULLAND.		Seat Market	
NO.	SPANS	CRITERIA	5-6	7-0	7-6	8-0	8-6	9-0	9-6	10-0	10-6	11-0	11-6	12-0	12-6
100	2000	Fb = 30,000	196	169	147	129	114	102	92	83	75	- 68	62	57	53
	3	Deft. = V240	176	140	114	94	78	-66	56	48	41	36	32	28	25
	- 55	Deft. = 1/180	233	186	151	125	104	88	75	64	55	48	42	37	33
		Fb = 30,000	177	155	137	122	109	98	. 88	80	73	67	62	57	. 57
3C22	2	Deft. = 1/240	420	336	273	225	188	158	134	115	100	87	76	67	59
		Deft. = 1/180	560	448	364	300	250	211	179	154	133	116	101	89	70
		Fb = 30.000	212	186	165	147	132	119	108	98	. 90	82	76	70	- 65
	3.	Deft. = 1/240	329	263	214	176	147	124	105	90	78	68	59	52	46
		Deff. = V180	430	351	285	235	196	165	140	120	104	90	79	70	82
	1 22	Fb = 30,000	252	218	189	167	148	132	118	107	97	68	81	74	- 68
	1 1	Deft. = 1/240	220	176	143	118	98	83	70	60	52	45	40	35	31
		Deft. = V180	293	235	191	157	131	110	94	81	70	61	53	47	41
		Fb = 30,000	242	211	185	184	146	131	118	107	. 97	89	81	75	89
3020	2	Deft. = 1/240	529	424	345	284	237	199	170	145	126	109	95	84	74
		Deft. = V188	706	565	459	379	316	266	226	194	167	146	127	112	99
		Fb = 30,000	294	257	226	201	179	161	145	131	120	109	100	93	85
	3	Deft. = 1/240	414	332	270	222	185	156	133	114	98	85	75	66	- 58
		Deft. = 1/180	552	442	360	296	247	208	177	152	131	114	100	88	78
		Fb = 30,000	364	314	273	240	213	190	170	154	139	127	116	107	. 06
	3.	Deft. = 1/240	300	240	195	161	134	113	96	82	71	62	. 54	48	42
		Deft. = 1/180	400	320	260	214	179	151	128	110	95	82	72	64	196
		Fb = 30,000	358	311	272	240	214	.191	172	156	:141	129	118	109	100
3C18	2	Deft. = 1/240	721	577	469	387	323	272	231	198	171	149	130	115	101
	22	Deft. = V180	962	770	626	516	430	362	308	264	228	198	174	153	135
	100	Fb = 30,000	439	382	335	296	264	236	213	193	175	160	147	135	125
	3	Deft. = 1/240	564	452	367	303	252	213	181	155	134	116	102	90	79
	100	Deft. = 1/180	753	603	490	404	337	284	241	207	179	155	135	120	106
		Fb = 24,000	383	330	286	253	224	200	179	162	147	134	122	112	104
	1 1	Deft. = 1/240	378	302	246	203	169	142	121	104	90	78	68	60	53
		Deft. = V180	504	403	328	270	225	190	161	138	119	104	91	80	71
		Fb = 24,000	367	319	279	246	218	195	176	159	144	132	121	111	102
3C16	2	Deft. = 1/240	909	728	592	488	407	343	291	250	216	188	164	145	128
		Deft. = V180	1213	971	789	650	542	457	388	333	285	250	219	193	170
		Fb = 24,000	451	392	344	304	270	242	218	197	179	164	150	138	127
	3	Deft. = 1/240	712	570	463	382	318	268	228	195	169	147	129	113	100
		Deft. = V180	949	760	618	509	424	357	304	261	225	196	171	151	133

Minimum exterior bearing length is 2.5 inches. Minimum interior bearing length is 5.0 inches.

35

Page | 108

Cable Design

ctural Assemblie

abie Design

Structural Assembly Characteristics

- Fitted with a wide variety of zinc- or resin-attached end terminations, including open and closed strand and wire rope sockets, bridge sockets, and anchor sockets
- Available with spiral strand or structural wire rope
- Provided prestretched, measured, striped, and proofloaded upon request
- Used in applications such as main cables, suspender and wind cables of suspension bridges; tower guys;
 cable stays; supports and suspenders for cable roof structures; anchor and mooring lines

Spiral Strand

- Arrangement of wires laid helically around a center wire to produce a symmetrical cross section
- Recommended for use as a loadcarrying tension member where bending and flexibility are not major requirements

- Offers a high strength-to-weight ratio, high modulus of elasticity, and a small diameterper-unit strength
- Manufactured to meet ASTM Specification A586
- Available with Class A, B. or C galvanized coating weights in diameters up to 5-1/2"

SS-265™

- High strength spiral strand with a nominal strength 15% higher than traditional spiral strand
- Manufactured to meet ASTM Specification A586
- Recommended for use in all spiral strand applications
- Decreases total weight of spiral strand system due to its higher strength-to-weight ratio
- Available with Class A galvanized coating weight in diameters through 3-3/4"

Structural Wire Rope

- Six strands laid helically around a core, such as another strand or another wire rope
- Recommended for use where bending ability is an important requirement
- Provides greater flexibility when compared with coarse strand constructions
- Manufactured to meet ASTM Specification A603
- Available with Class A, B. or C galvanized coating weights in diameters up to 7*

🛂 Bethlehem Wire Rope®

Page | 109

Spiral Strand

NOWINE STRENGTH (new)

WEIGHT (B./ft)

SHIPS.

報の数

SIRKA STRAND

NOMINAL STRENGTH (on)

APPROXIMATE VALIGHT (Is, fft.)

STEWNO STEWNOOD

SPEA

0.5

얼

250

and SS-265

報報

SPIRAL STRAND

ructural Assemblies

PSU Ice Hockey Arena

chamby of the plant suntail Based on Class A compage. Jo the menteres me ded of hemter coastign, platse com nå WW's Engineer are shown below. For Ing Department Att magazine

Ŗ

8

e) 전

 $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}$

 $\frac{62}{64}$

ġ

8

90

8 24.0 8

50 90 6 8 8 (0) (0) 5 2 5 5 5 8 ğ 2 3 8 8 8 3 3 8 8 8 8 8 音器 Ř ğ ¥ 8 6 20 50 3 8 5 : 8.5 86 20 0 866 g. 養養 ĕ 8 8 ě 8 (N) Ř ŝ 9.0 Š 6 ŝ e G 营 ĝ 8 60) (6) à 8 혡 9 0.00 80 1000 0.EF 0.85 120.0 9 115.0 0.8 0.00 2 2 8 8 8.0 20112 25-8 8-8 $\frac{2}{2}$ 7.00 60 变 第 開発され 使压药 影響の (전 구 建设 製み 87 見しず 見る 野中 8 24 (2) (3) 덣 Ē 600 8 8 40 Es 8 ŘŘ 04 04 80 200 13 Ŷ 8 93 8 8 3 S R 000 8 8 g8 001 Ş. 3 3 N B Ź 内容 ä ĕ 70 20 60 F 1 0. 50 04 55 0. 8 8 2 5 6 8 0; 5; 2 90 8 の 装 90 98 2 9 8 3 8 8 8 8 8 8 60 64 8 8 8 8 8 8 (2) (4) ¥. $_{ci}^{2i}$ 다. 전 3 3 83 83 R c

Bethlehem Wire Rope®

Page | 110

200

受けた

왕

Ř

200

 Ξ_{μ}

\$ -

90/21

 $_{i}^{p}$ (i) (i)

> 2007 100 m

93 7 7

Ş 8 R

2000

(2) (2)

医线

Ç 8

\$12.13E

20

90

86

25 E

27/12 원 경 250

ğ

얁

B) ci 3 ci 8 6 展成

800 E

8

0.80 80

5

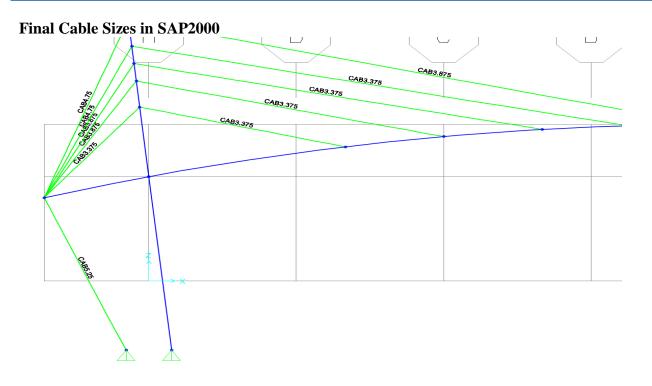
鬓

2

 $_{c}^{m}$

babyak sampson schreffler

Preliminary Cable Sizing Example

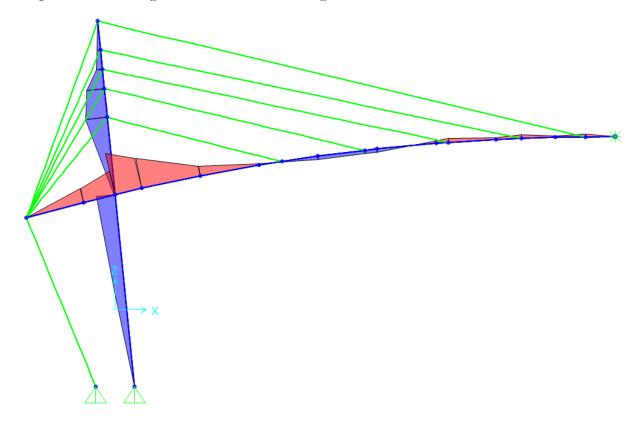

	T ₁ =	T ₂ =	T ₃ =	T ₄ =					S _d >?	S _d >?	2
	D+P	D+S+P	D+P+W	D+P+S+W	2.2T ₁	2.2T ₂	2.0T ₃	2.0T ₄	(kips)	(tons)	Cables
1	2342	2871	1951	2486	5152.4	6316.2	3902	4972	6316.2	3158.1	1579.05
3	193	226	167	201	424.6	497.2	334	402	497.2	248.6	
4	135	167	109	141	297	367.4	218	282	367.4	183.7	
5	245	307	198	261	539	675.4	396	522	675.4	337.7	
6	146	183	117	154	321.2	402.6	234	308	402.6	201.3	
7	271	336	222	288	596.2	739.2	444	576	739.2	369.6	
8	152	192	122	162	334.4	422.4	244	324	422.4	211.2	
9	294	362	243	312	646.8	796.4	486	624	796.4	398.2	
10	162	204	131	174	356.4	448.8	262	348	448.8	224.4	
11	315	386	263	334	693	849.2	526	668	849.2	424.6	
12	176	220	144	188	387.2	484	288	376	484	242	
13	331	403	277	350	728.2	886.6	554	700	886.6	443.3	
14	190	236	157	202.5	418	519.2	314	405	519.2	259.6	
15	471	582	389	502	1036.2	1280.4	778	1004	1280.4	640.2	
16	201	249	167	215	443	547.8	334	430	547.8	273.9	
17	488	600	406	519	1073.6	1320	812	1038	1320	660	
18	214	264	179	229	470.8	580.8	358	458	580.8	290.4	
19	561	674	479	593	1234.2	1482.8	958	1186	1482.8	741.4	
20	343	424	285	367	754.6	932.8	570	734	932.8	466.4	

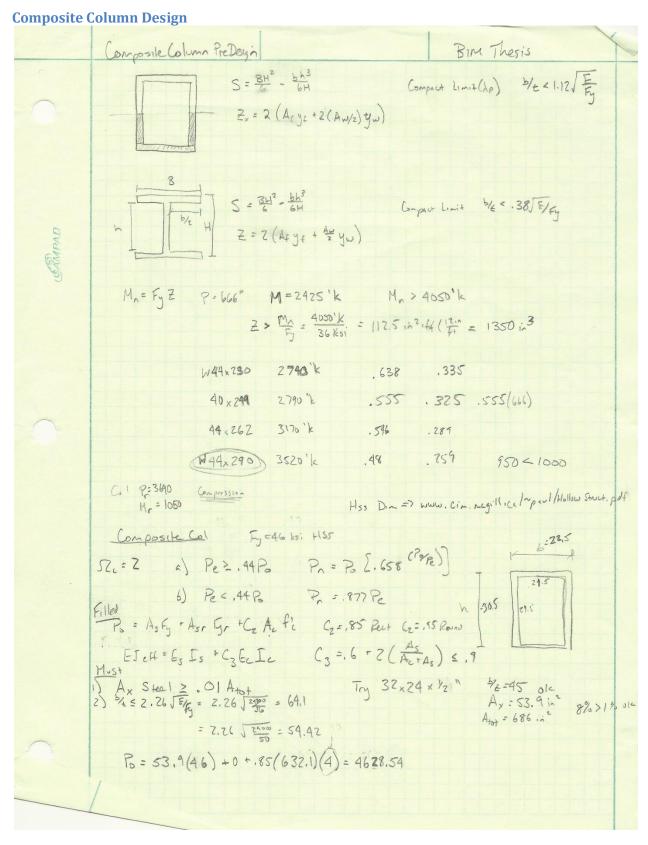
5.25
3.75
2.25
3

PSU Ice Hockey Arena

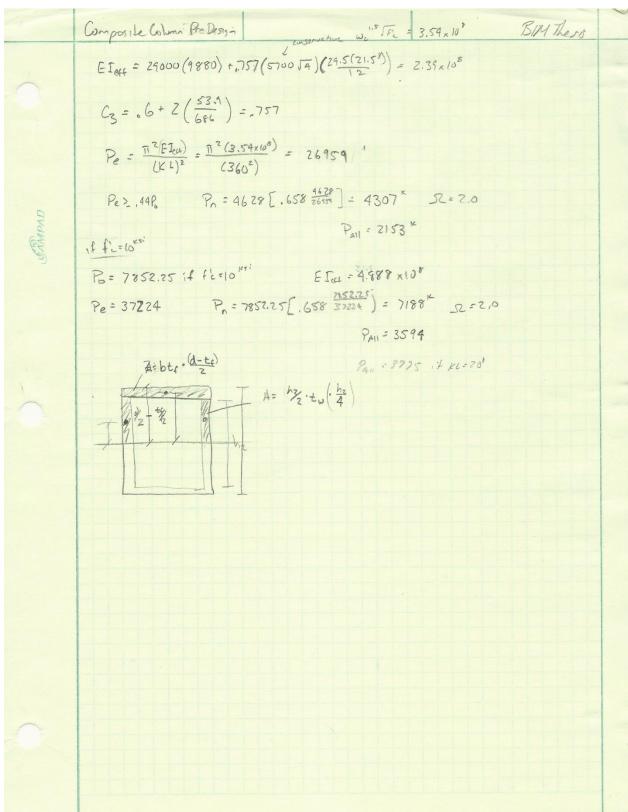
Preliminary Cable Pretensioning

# of cables	Cable	E (ksi)	Diameter (in)	Area (in²)	P _D (kips)	P _L (kips)	P _{PRE} (kips)	σ=P _{PRE} /A	ε=σ/Ε
2	1	22000	5	43	2140	571	3500	80.84	-0.00367
1	3	22000	2	4	189	59	219	54.95	-0.00250
1	4	22000	2	4	123	58	152	38.23	-0.00174
1	5	22000	4	11	241	66	274	24.81	-0.00113
1	6	22000	2	4	139	56	167	41.95	-0.00191
1	7	22000	4	11	261	69	296	26.76	-0.00122
1	8	22000	2	4	152	49	176	44.32	-0.00201
1	9	22000	4	11	278	74	315	28.52	-0.00130
1	10	22000	2	4	165	45	187	46.99	-0.00214
1	11	22000	4	11	292	77	331	29.92	-0.00136
1	12	22000	2	4	177	46	200	50.30	-0.00229
1	13	22000	4	11	303	80	343	31.06	-0.00141
1	14	22000	2	4	188	49	212	53.39	-0.00243
1	15	22000	3	7	424	112	480	67.93	-0.00309
1	16	22000	2	4	197	51	223	55.96	-0.00254
1	17	22000	3	7	433	114	490	69.38	-0.00315
1	18	22000	2	4	206	53	233	58.61	-0.00266
1	19	22000	3	7	488	128	552	78.11	-0.00355
1	20	22000	4	11	332	86	375	33.99	-0.00155
20									

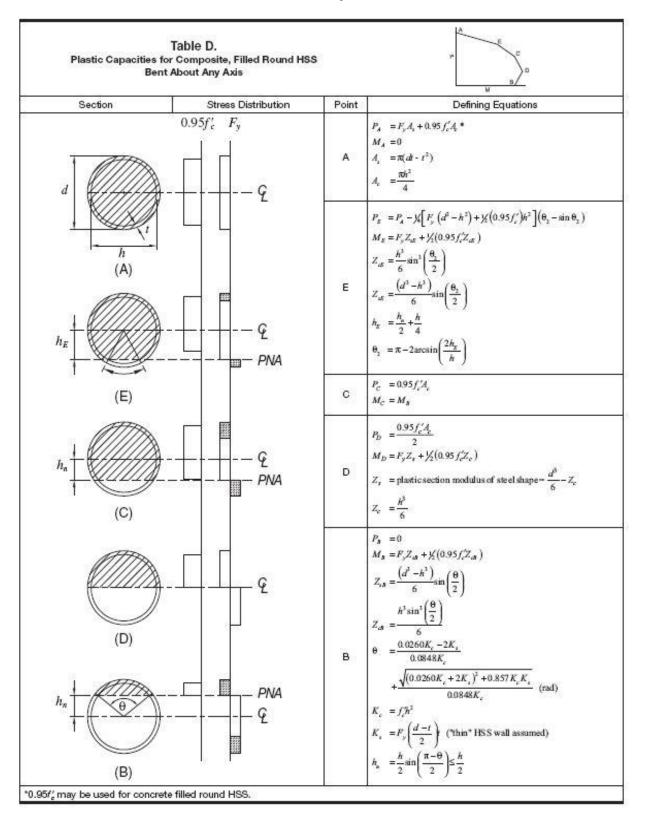



Page | 112
babyak | sampson | schreffler

Final Maximum Deflection of Roof Under All Load Cases


Load Case	U3 (in)	R2 (rad)
D+S (Flat)	-7.31	.0055
D+S (Unbal)	-6.88	.0035
D+.75L+.75S (Flat)	-6.15	012
D+.75L+.75S (Unbal)	-5.96	014
D+.6W	69	0003
D+.75(.6W)+.75S (Flat)	-5.3	.003
D+.75(.6W)+.75S (Unbal)	-4.21	.0017
.6D+.6W	7.53	0067

Sample Moment Diagram Under D+S Loading



Page | 114

Page | 115

Page | 116

babyak | sampson

schreffler

Τ

Plastic Capacities for Composite, Filled Round HSS Bent About Any Axis

Properties

A _s =	162.5774198	in ²
d=	36	in
t _w =	1.5	in
h=d-2t _w =	33	in
A _c =	855.2985999	in ²
F _y =	50	ksi
f' _c =	8	ksi
E _s =	29000	ksi
I _s =	24234.19664	in ⁴
I _c =	58213.76096	in ⁴

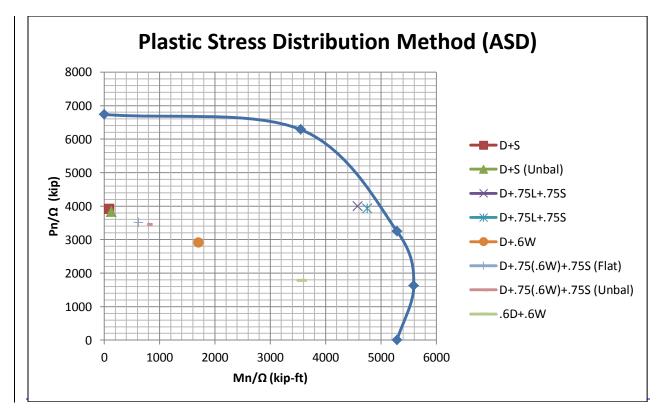
Limita	tions:
A _s >.01A _{tot}	0.15972
D/t<0.15(E/F _y)	24

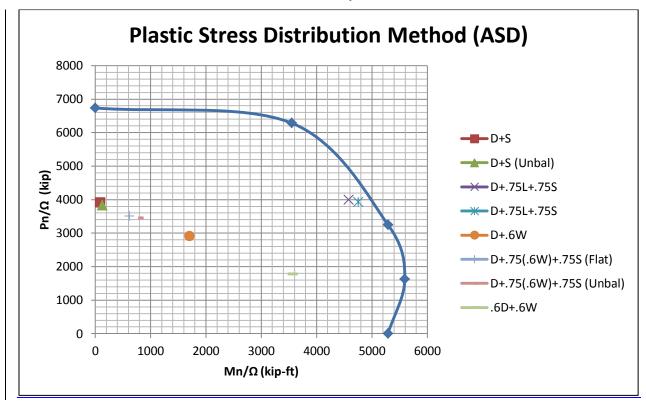
Point	Defining Equations		Units
A	$P_A = P_o = A_s F_y + A_c (.95f'_c) =$	14629.14035	k
	M _A = 0 =	0	k-in
	$P_E = P_A25[F_V(d^2-h^2) + .5(.95f_c)h^2](\Theta_2 - \sin\Theta_2) =$	12571.09094	k
	$M_E = F_y Z_{sE} + .5(.95 f'_c Z_{cE}) =$	71095.71702	k-in
E	$Z_{cE} = h^3/6*\sin^3(\Theta_2/2) =$	2109.356203	in ³
	$Z_{sE}=(d^3-h^3)/6*sin(\Theta_2/2)=$	1261.603269	in ³
	$h_E = h_n/2 + d/4 =$	11.68241678	in
	Θ_2 = Π-2arcsin(2h _E /h)	1.568196788	rad
С	$P_{C} = A_{c}(.95f_{c}^{t}) =$	6500.26936	k
	$M_C = M_B =$	105995.0011	k-in
	$P_D = .95f'_c A_c/2 =$	3250.13468	k
D	$M_D = Z_s F_y + .5 Z_c (.95 f'_c) =$	112085.1	k-in
	$Z_s = d^3/6 - Z_c =$	1786.5	in ³
	$Z_c = h^3/6 =$	5989.5	in ³
	P _B = 0 =	0	k
В	$M_B = F_y Z_{sB} + .5(.95f'_c Z_{cB}) =$	105995.0011	k-in
	$Z_{sB} = (d^3 - h^3)/6*sin(\Theta/2) =$	1689.43124	in ³
	$Z_{cB}=h^3/6*\sin(\Theta/2)=$	5664.062923	in ³

Page | 117

babyak | sampson | schreffler

Θ =(.0260K _c -2K _s)/.0848K _c + [(.0260K _c +2K _s)2+.857K _c K _s] ^{.5} /.0848K _c =	2.479270097	rad
$K_c = f'_c h^2$	8712	k
$K_s = F_y[(d-t)/2]t$	1293.75	k
$h_n = (h/2)\sin[(\Pi-\Theta)/2] \le h/2 =$	5.364833564	in

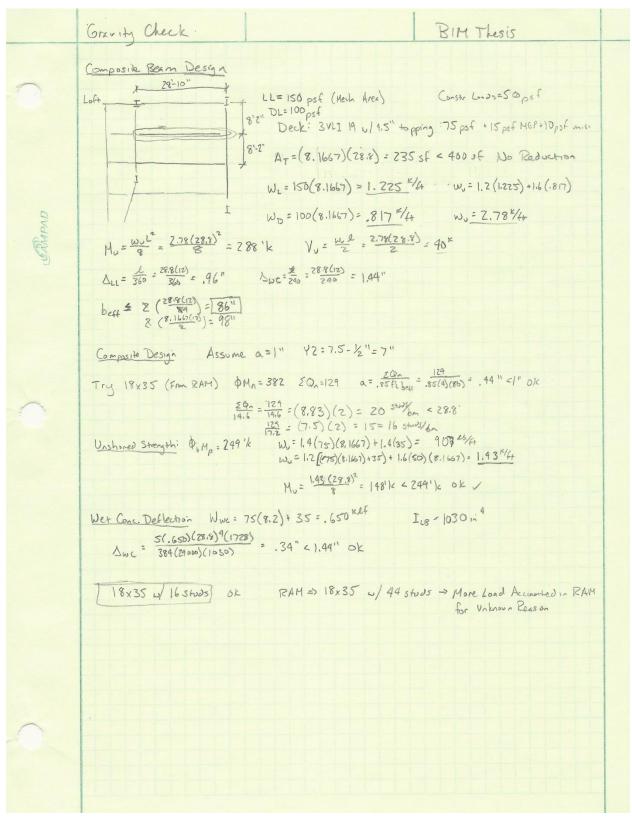

Compressive Strength Check

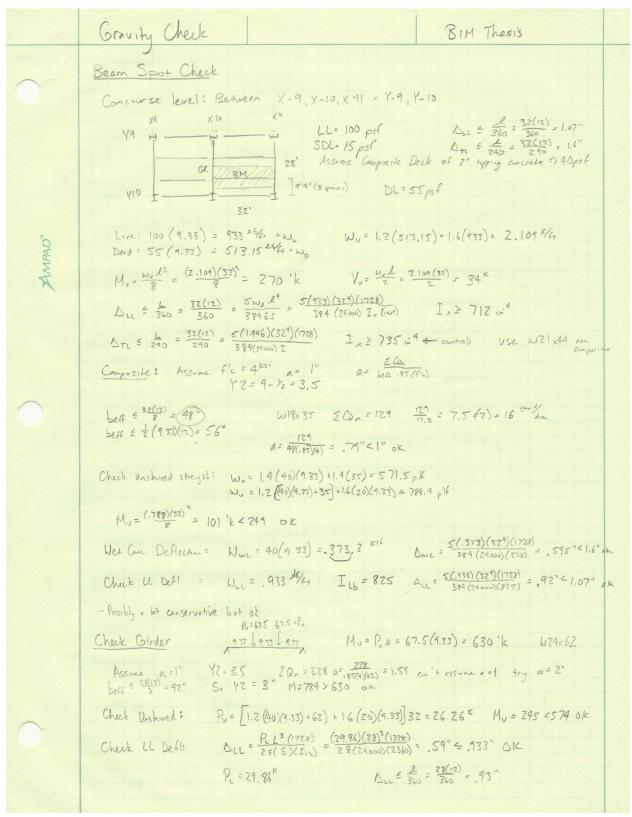

$E_s =$	29000	ksi
$E_c = w_c^{1.5} (f'_c)^{.5} =$	5196.152423	ksi
w _c =	150	lb/ft ³
K=	1	
L=	360	in
$EI_{eff} = E_sI_s + C_3E_cI_c =$	975030520.2	in ⁴
$C3 = .6 + 2(As/Atot) \le .9 =$	0.9	
$P_e = \Pi^2 (EI_{eff})/(KL)^2 =$	74252.82032	
P _o =	14629.14035	k
.44P _o =	6436.821754	k
(a) When $P_e \ge .44P_o$	74252.82032	k
$P_n = P_o (.658^{(Po/Pe)}) =$	13471.19243	k
(b) When $P_e < 0.44P_o$	74252.82032	k
P _n = .877P _e	65119.72342	k

Load Case	P (k)	M (k-ft)
D+S (Flat)	3908	94
D+S (Unbal)	3831	124
D+.75L+.75S (Flat)	3997	4580
D+.75L+.75S (Unbal)	3934	4751
D+.6W	2905	1704
D+.75(.6W)+.75S (Flat)	3507	618
D+.75(.6W)+.75S (Unbal)	3448	784
.6D+.6W	1783	3575

Factors						
Ωc=	2					
Ωb=	1.67					
Фс=	0.75					
Фb=	0.9					

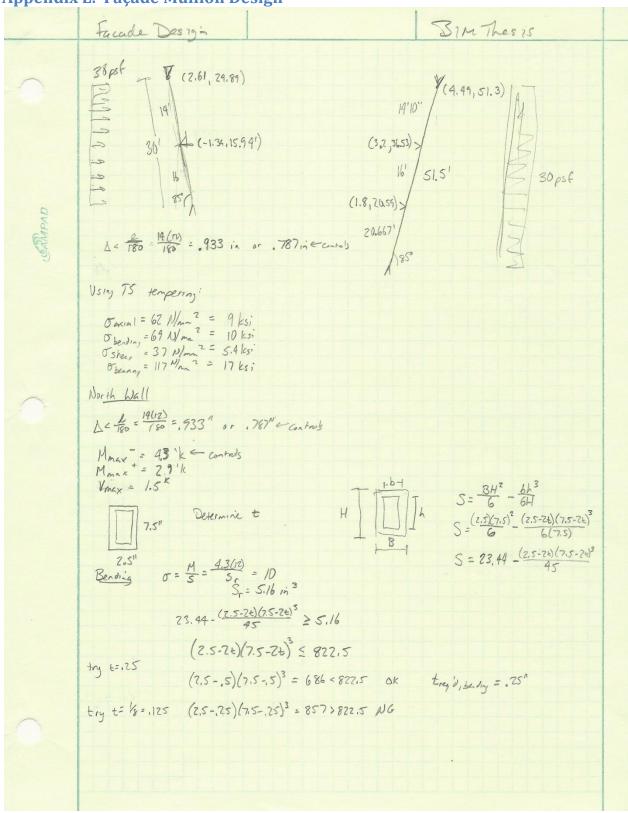
Interaction Diagram									
Point	Mn	Pn	ФМп	ФРп	Mn/Ω	Pn/Ω			
Α	0	13471.19	0	10103.39	0	6735.596			
E	5924.643	12571.09	5332.179	9428.318	3547.69	6285.545			
С	8832.917	6500.269	7949.625	4875.202	5289.172	3250.135			
D	9340.425	3250.135	8406.383	2437.601	5593.069	1625.067			
В	8832.917	0	7949.625	0	5289.172	0			




Appendix D. Gravity System

	Deck Check BIM Thesis
	Floor Loads: Depressed Mechanical: 150 psf LL + 130 psf OL TL: 280 psf
	Main Concourse: 100 psf LL + 90 psf DL TL=190 psf
	Club Level 100 psf LL + 90 psf DL + 190 psf Mech Ara 150 psf LL + 130 psf DL TL = 280 psf
	Deck spended as 3VLI topping thickness 4.5" for appearance (less cracks), acoustics, fire rating
CAMPAD	When the (superimposed) = 190 psf 3 span cond. Loading=190 Spacing Mars 3VLI 22 8'27 9'0, 205 >190 3VLI 20 11'0" 9'6" 10'6" 190 2150 3VLI 19 12'2" 10'6" 191 2190 3VLI 18 13'3" 11'6" 195 2 196 3VLI 16 13'4" 12'0", 202 2 190
	When The (Supering possed) = 280 psf 3 Spen Cond Loading = 280 Spacing Maximum 3VLI 22 8'2" [7'6"] 331>280 3VLI 20 11'6" [8'6"] 303>280 3VLI 19 12'2" [9'0"] 302>280 3VLI 18 13'3" [10'0"] 294>280 3VLI 16 13'4" [11'0"] 283>280
7	3VLI 6 13 ' 4" 283>280
1	

Page | 121



Page | 122

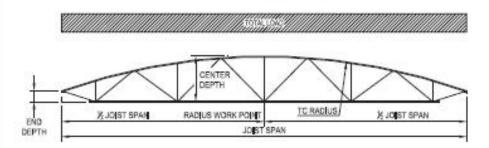
Page | 123

Appendix E. Façade Mullion Design

Page | 124

	Facade Design Bin Thesis
	Shear toux = 3/2 \frac{1}{A} = 5.4
	$\frac{3}{2}\left(\frac{1.5}{A}\right) \leq 5.4$
	A>\frac{3}{5}\left(\frac{1.5}{5.4}\right) = 0.417 in 2 A = 4.75 is >> 1.417 is a ke bending counts
	Deflallowed: .933">.787" S. <.787"
Q	I = 87.85 - 57 = 31 in 4 Max deft = .331 in < .787 in OK E = 10,000 ts;
CAMPAD	Bearing Bolts @ center, assume 2
9)	Force pe 6.14: 2=1.4 K
	Obering: 17 ksi - ,25" being see
	D = .164 in - use std. 1/2" die bolt
	Same idea for transon, then we point load on vert mullion for actual idea
0	

Page | 125


Appendix F. Community Rink Roof Design

BOWSTRING JOIST (SPBW) TABLES

The following weight tables are representative of SP-Series the estimated self-weight in pounds per linear foot. This catalog joist designs for Bowstring Joists with parameters shown in the diagram below. The maximum allowable Live Load deflection is the table. The tables also give bridging requirements per Section 904.5(d), the required seat depth for the given profile, as well as representative or visit www.newmill.com.

provides two design examples for reference and clarification on design issues. The following tables are not representative of L/240 for a Live Load equal to 75 percent of the Total Load listed in any limits or constraints on design or constructability by NMBS. For further information, please contact your nearest NMBS

ALL TABLES ARE BASED ON ASD

BOWSTRING JOIST (SPBW)

Page | 126

babyak sampson schreffler

9-SHISTARIS

www.newmill.com

	1 50 fee Hockey Air	CIIu					
Bowstring Joist Design							
Design Criteria:						110	c.
Design Code:	IBC 2009, ASCE 7-10				Clear Span:	110	ft
Project Location:	State College, PA				Joist Span:	110	ft
Load Combination:	ASD				Spacing:	11.5	ft
Building Class:	11				Radius:	332	ft
Importance Factor:	1.1				Exposure C		
Loading:							
Roof Dead Load (D):	30	psf		inc self	wt (5), MEP (15),	roofing (:	10)
Roof Live Load (L_r):	34	psf			(2),	, 8	,
Roof Net Uplift (UL):	20	psf					
noor net opint (ot).	230	plf					
Snow Load:	250	PII					
Ground Snow	p _g =		40.0	psf			
	C _e =		1.0	•			
	C _t =		1.1				
	C _s =		1.0				
Flat Roof Snow Load:	$p_f = .7C_eC_tIp_g =$		33.9	psf			
Sloped Snow Load:	$p_s = C_s p_f =$		33.9	psf			
Profile Projection Ratio, R _{pr}							
$R_{pr} = \frac{((2*radius*pi)/(span*180^{o}))*sin^{-1}}{(span/(2*radius))} =$	R _{pr} =		1.005				
Linear Loading:							
Adjusted Dead Load=	D*R _{pr} *joist spacing=	3	346.7	plf			
Roof Live Load =	L _r *joist spacing=	3	391.0	plf			
Uniform Snow Load=	S*joist spacing=	:	389.6	plf			
Total Uniform Load=	$TL= D+(L_r \text{ or } S)=$		737.7	plf			
Uniform Snow Load Case	TL=		737.7	plf			
TL Check	$W_{eqV-TL} = W_{eqM-TL} =$		737.7	plf			
LL Check	$W_{eqM-LL} =$:	391.0	plf	Less than 600 plf (.75*800), LL Deflection OK		

Page | 127

babyak | sampson | schreffler

Unbalanced Snow Load Case

Windward Side:

No Snow Load per Figure 7.3 Case 1 with the slope at the eave < 30 degrees

Le	ew	ar	h	Si	d	e:
	~ "	u	·	"	u	٠.

Leeward Side.			
Snow Load S=	$2*p_f*C_s/C_e=$	67.8 ps	sf
	S*Spacing=	779.2 pl	lf at eave
Snow Load S=	.5*p _f =	16.9 ps	sf
	S*Spacing=	194.8 pl	lf at crown

For simplicity, the equivalent uniform load is calculated using a simple beam with the leeward unbalanced snow at the inside face of the wall and not at the eave or end of extension. This is slightly conservative and has negligible effect on the resulting maximum moment

	V_{ub} =	22400.0	lbs
	M _{ub} =	364200.0	lbs-ft
W _{eqV-TL} =	$2*V_{ub}/L=$	407.3	plf
W _{eqM-TL} =	$8*M_{ub}/L2=$	240.8	plf

Sloped Adjustment

Siopeu Aujustilielit				
	Rise=	0.0		
	Run=	1.0		
R _s =(Rise ² +Run ²) ^{.5} /Run=	R _s =	1.00		
Adjusted W _{eq} =	$W_{eq}/R_s =$	737.7 plf	at sloped span	53.75 feet
Adjusted $W_{eqLL} =$	$W_{eqLL}/R_s =$	391.0 plf		

Small Joist: New Millennium 104 SPBW 738/391/230, span=110', Radius=332', 7.5 inch seat depth, 5 rows of bridging

Large Joist: New Millennium 164 SPBW 738/391/230, span=110', Radius=332', 7.5 inch seat depth, 5 rows of bridging

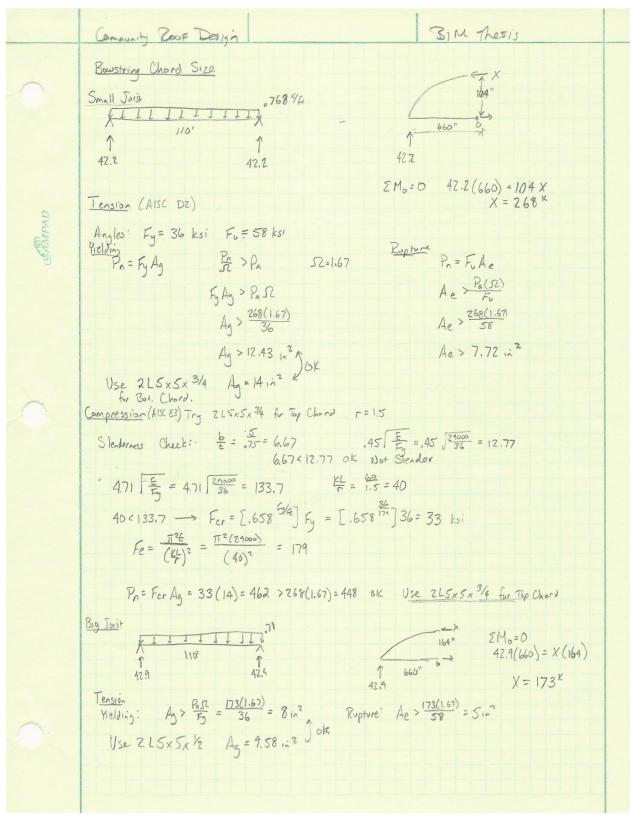
47

PSU Ice Hockey Arena

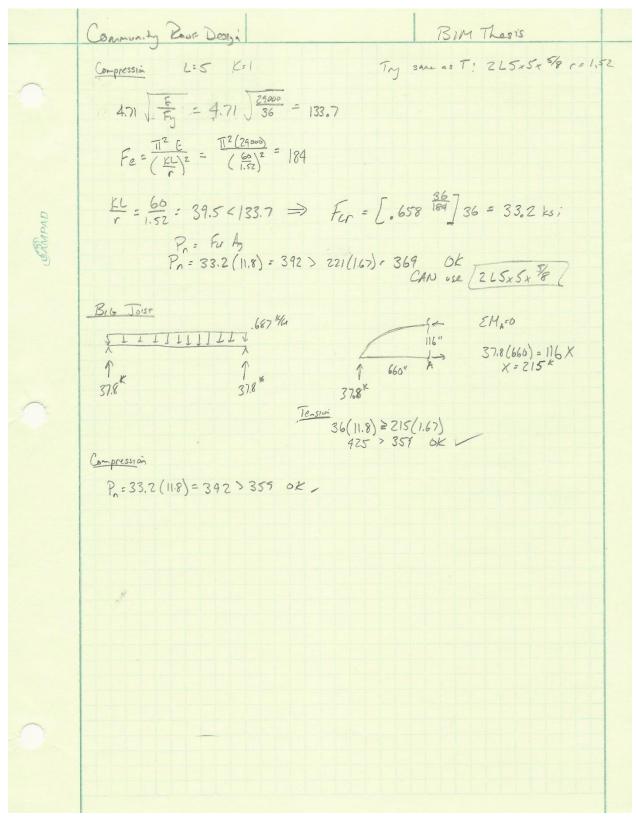
BOWSTRING JOIST (SPBW) TABLES

			Тор	Top Chord Uniform Load - Pounds per Linear Foot (piff) (ASD)										
Span	End Depth	Center Depth	Chord	300	350	400	450	500	550	600	650	700	750	800
ft.	in	in	R	300	333			Weight -					100	0.0
110	42	56	1237	34	33)	46	51	55	63	66	73	79	83	93
110	35	56	865	34	39	46	51	55	62	66	74	79	83	94
110	29 22	56	673 535	34	#	46	54 54	58	62	66	74 74	79 78	83	92
110	15	56	444	35	44	49	54	58	65	69	73	86	90	102
110	- 8	56	380	36	43	49	54	58	65	63	73	- 86	90	102
110	- 47	63	865	30 29	32	38	41	48	52 52	56	60	65	63	72 72
110	41 34	63	673 535	31	32	40	41	48	52	56 56	60	64	63	72
110	27	63	444	31	34	39	46	47	52	56	60	67	71	76
110	20	63	380	31	34	39	- 45	51	55	59	63	67	71 70	75 75
110	13 53	83	332 673	28	34	39	46 38	50 42	49	59 49	62 55	58	63	65
110	46	80	535	30 28	31	36	38-	41	49	49	54 54	58	62	66
110		80	444	28		34	40	42	49			57	61	65
110	32 25	80	380	30	33	36	40	41	47 52	53 53	53 53	57 61	61	65
110	11	80	266	29	32	35	39	45	51	53	57	60	65	65
110	56	922	286 535	29 28	32 30	32	39	39	51 42	40	51	55	56	68 59
110	51	92	380	30	32	32	35	39	43	46	51	55	56	59
110	44 37	92	332	30	33	34	38	42	42 46	49	50	55	56	60) 59
110	23	92	266	30	32	34	37	41	47	51	54	54	59	59
110	10	92	225	31	32	34	37	40	46	51	52	58	61	62
110	70 63	104	535	30	32	33	35	39	41	44	49	51 51	53 53	58 58
110	56	104	380	31	31	33	35	38	40	43	49	51	53	58
110	49	104	332	31	33	33	34	40	40	43	49	51	52	58
110 110	35 22	104	266 225	31	32	34	36	39 41	42 41	43	48 52	50 54	52 56	59 59
110	75	116	444	32	34	36	37	39	41	44	47	51	54	54
110	63	116	380	32	33	35	36	38	40	43	46	51	53	54
110	61 47	116	332 266	32	33	35	36	38	40	43	46	51	53	54
110	34	116	225	32	34	34	37	39	42	42	46 48	50	52 52	53 52
110	6	116	170	32	35	36	38	39	41	47	51	53	55	55
110	87	128	444	35	36	38	39	41	42	46	49	53	53	54
110	80 73	128 128	380	35 34	36	37	39	40	42	44	48	52	53 53	54 55
110	59	128	266	35	35	37	38	39	41	44	46	52	52	54
110	46	128	225	33	37	39	39	39	40	43	46	51	52	53
110	18	128	170 444	36	37	37 40	40	40	42	48	50	50	51 56	57 58
110	92	140	380	38	38	40	42 41	43	44	47	50	54	56	57
110	85	140	332	37	38	40	42	43	44	46	48	54	55	56
110	71	140	266	37	38	40	41	43	44	44	47	53	55	55
110 110	30	140	225 170	39	39	39 41	42	42	43 46	46 46	47 46	53 51	54 53	55 53
110	111	152	444	42	44	48	48	48	51	51	54	58	60	61
110	104	152	380	42	44	46	46	47	50	50	53	58	59	60
110	97 83	152 152	332 266	41	43	44	46	47	48	51 49	51 51	57 56	59	59 59
110	70	152	225	40	42	43	46	46	46	43	50	54	56	58
110	42	15.2	170	40	40	42	43	45	46	46	43	52	54	56
110	123	164	380	46	46	46	49 51	52	53 51	56	59	60	62	64
110	109	164	332	46 46	47 46	47	48	51	51	55	57 57	59	64	64
110	95	164	266	46 44	46	46	49	51 49	51 51	51	53	59	60	61
110	82	164	225	43	44	46	48	48	50	51	56	59	59	60 58
110	54	164	170	42	43	44	47	47	49	49	53	55	58	- 30

X - Bridging Requirements - Reference SP-Series Specification Section 90.4.5 BRIDGING on page 92


1 row 2 rows 3 rows 4 rows 5 rows 6 rows 7 rows 8 rows 9 rows 10 rows

Bearing Seat Depth - Profiles to the right of a colored line have a seat depth as indicated in the chart below
Minimum 5" 7% 10" Maximum 12%*



Page | 129

babyak | sampson | schreffler

Page | 130

Page | 131

Appendix G. Structural References

American Society of Civil Engineers. ASCE 19-10 Structural Applications of Steel Cables for Buildings. New York: ASCE, 2010.

Book: This book acts as a standard for cable structure design. It is the only standard provided by the ASCE regarding cable supported structures.

Barnes, Michael, and Michael Dickson. *Widespan Roof Structures*. London: Thomas Telford Publishing, 2000.

Book: Barnes and Dickson compiled multiple case studies on widespan roof structures into this book. It contains many pictures and illustrations of current cable supported structures.

Bethlehem Steel. Cable Roof Structures. Bethlehem Steel Corporation, 1968.

Book: This contains many case studies of cable roof structures produced by Bethlehem Steel.

Buchholdt, H.A. *An Introduction to Cable Roof Structures: Second Edition*. London: Thomas Telford Publications Ltd., 1999.

Book: Buchholdt introduces cable design basics and then delves into structural calculations of cable structures. The chapters contain multiple tables and graphs for structural design of several types of cable systems.

Christoforou, C., Treece, R., Monteiro, A., & Scarangello, T. (2007, February). The Newark Arena: Future Home of the New Jersey Devils. *Structure Magazine*.

Article: Case study from the structural design engineers of the Newark Arena.

Harris, James, and Kevin Pui-K Li. *Masted Structures in Architecture*. London: Butterworth Architecture, 1996.

Book: This book compiles hundreds of examples of masted cable structures. Harris and Pui-K Li introduce several case studies and categorize cable mast structures.

Krishna, Prem. Cable-Suspended Roofs. United States of America: McGraw-Hill, 1978.

Book: This book introduces the different types of cable structures and details the different parts of cable structures. Krishna also introduces several equations to design cable structure systems.

Monolithic. (n.d.). *Monolithic*. Retrieved August 25, 2011, from http://www.monolithic.com/ **Website:** Site devoted to monolithic dome structures. Contains information about different uses and benefits of monolithic domes. Also, contains product information about the domes.

Narayanan, Subramanian. *Space Structures: Principles and Practice*. United Kingdom: Multi-Science Publishing Co., 2006.

Book: Narayanan introduces the many ways to design space structures for long span buildings. A few chapters focus on cable structures and go into design examples of real cable structures.

		Page 13	2		
babyak		sampson		I	schreffler

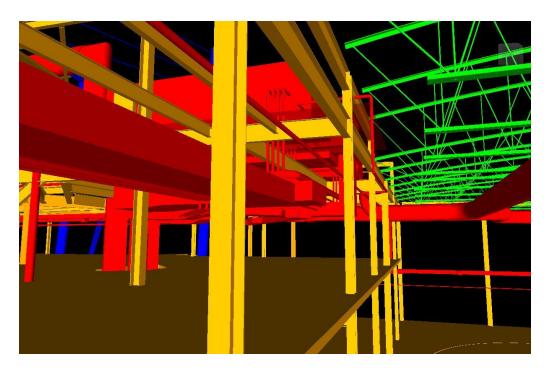
Salvadori, M. (2002). Why Buildings Stand Up: The Strength of Architecture. New York: W.W. Norton & Company.

Book: Describes different types of structure from the ancient world up to today. Includes chapters on domed, tent, pneumatic, and hanging structures

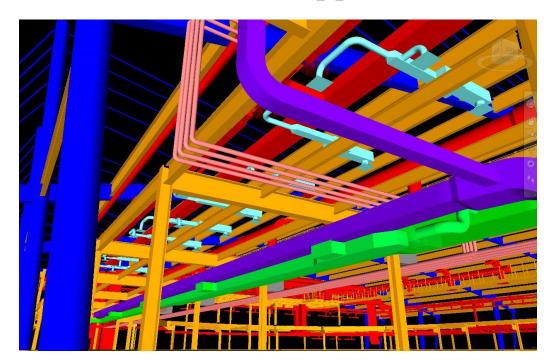
Salvadori, M., & Levy, M. (2002). Why Buildings Fall Down: How Structures Fail. New York: W.W. Norton & Company.

Book: Details many notorious buildings failures from the ancient world up to today. Includes case studies of many long-span structural failures.

Scalzi, J.B., W. Jr. Podolny, and W. C. Teng. *Design Fundamentals of Cable Roof Structures*. Pittsburgh: United States Steel Corporation, 1969.


Book: This book introduces basic cable structural calculations and contains real life design examples.

Seidel, Michael. Tensile Surface Structures: A Practical Guide to Cable and Membrane Construction. Berlin: Deutsche Nationalbibliothek, 2009.


Book: Seidel illustrates and describes the construction of cable and membrane structures. The book contains hundreds of pictures and illustrations to detail the construction of these types of structures.

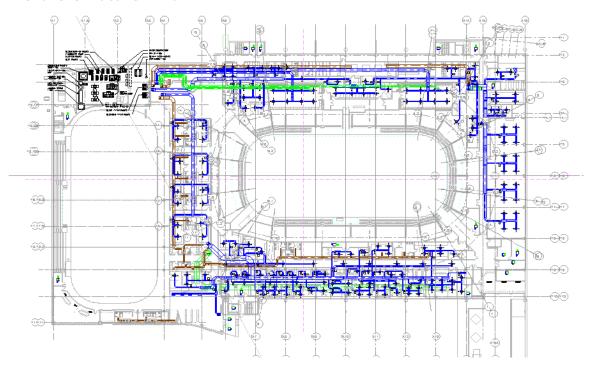
- Solomon, N. (2010, May). Flights of Fancy in Long-Span Design. *Architectural Record*. **Article:** Architectural case studies on recent successful long-span structures.
- Tow, D., & Schrauben, C. (2004, May). Center Stage. *Modern Steel Construction*. **Article:** Case study on the cost and construction effectiveness of the new Arena at Gwinnett Center
- Tyler, T. (n.d.). *Large Domes*. Retrieved September 5, 2011, from http://largedomes.com/ **Website:** Site includes ranking of world's largest domes with images and statistics. Also provides links to several sites that have more information about different ways to design a long span structure
- Wong, R. (2001, February). *Long Span and Complex Structure*. Retrieved September 1, 2011, from personal.cityu.edu.hk/~bswmwong/pl/pdf/longspan.pdf **Presentation:** PowerPoint Presentation that describes basic technical aspects to categorize long span structures. It then shows examples of these structures through case studies

1

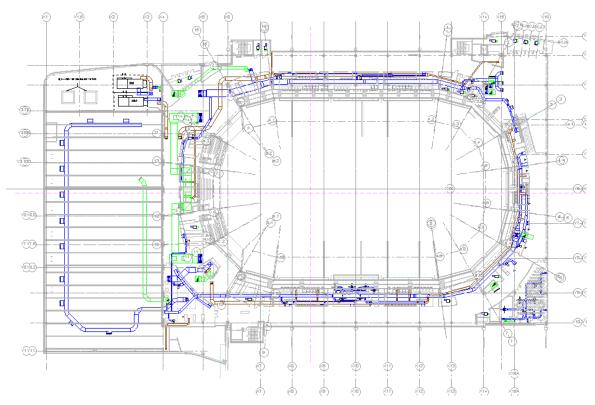
Mechanical Appendix

Page | 134

babyak | sampson | schreffler

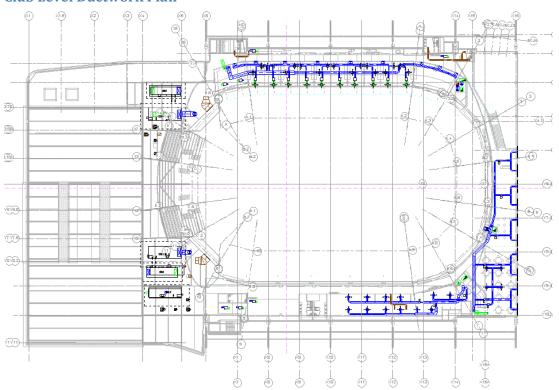

Appendix H. Mechanical MAE Requirements

The redesign of the mechanical units supplying the main arena was assisted by information from AE 555-Building Automation and Control. Material from AE 542-Building Enclosure Science and Design was used in the façade design analysis and for the roof design analysis. Principles from AE 558-Centralized Heating Production and Distribution Systems and AE 557-Centralized Cooling Production and Distribution Systems were implemented into the relocation of the mechanical units and the life-cycle cost analysis. The indoor air quality of the main arena was evaluated based on lessons learned in AE 552-Air Quality in Buildings. Knowledge from AE 467 Advanced Building Electrical Design was used to design the electrical system for the arena.


ı

Appendix I. Redesign Floor Plans

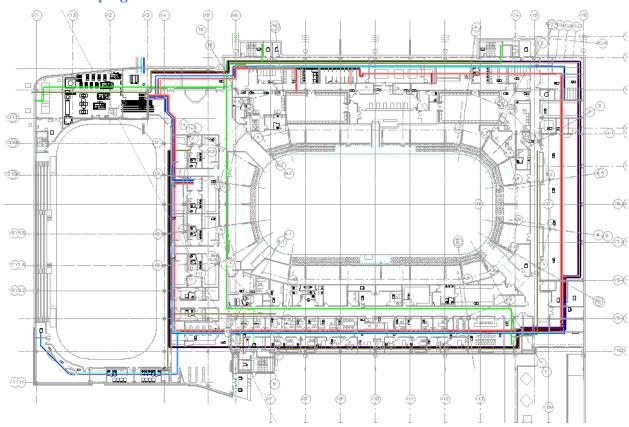
Event Level Ductwork Plan

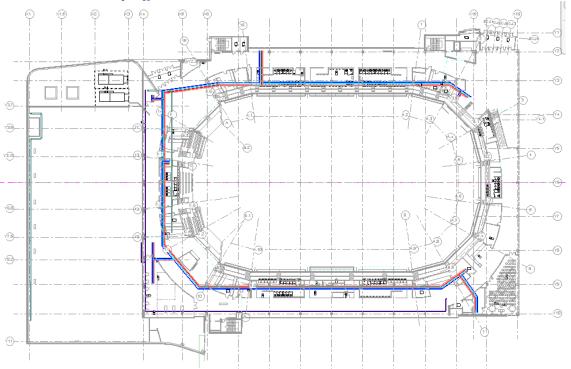

Concourse Level Ductwork Plan

Page | 136

babyak | sampson | schreffler

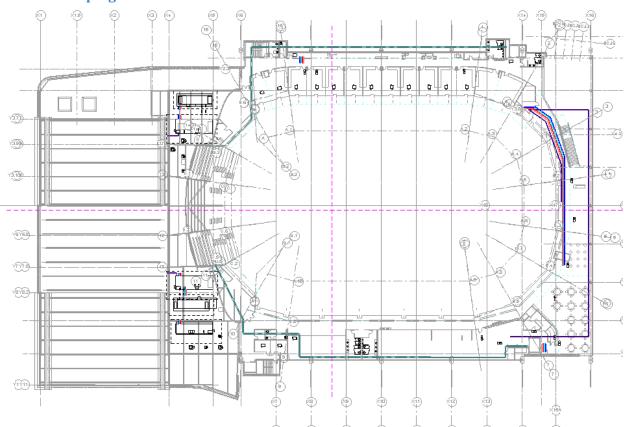
Club Level Ductwork Plan


Catwalk Level Ductwork Plan


Page | 137

babyak | sampson | schreffler

Event Level Piping Plan


Concourse Level Piping Plan

Page | 138

babyak | sampson

Club Level Piping Plan

Mechanical Room Detail

babyak

sampson

TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012 Alternative - 1 System Checksums Report Page 1 of 12

PSU Ice Hockey Arena

Appendix J. Trane Trace AHU System Checksums

System Checksums
By ACADEMIC

	HEATING COIL SELECTION	I		AREAS				NOITU	COOLING COIL SELECTION	SNI IOOO		
le 46	No. People	100.00	-69,135	-21,703	Grand Total ==>	100.00	180,862	100.00	252,256	21,142	182,202	Grand Total ==>
73	_							***				
	ft*/ton	0.00	0		Supply Air Leakage			0	0	0	ġ.	Supply Air Leakage
312.55	cfm/ton	0.00	0		Underfir Sup Ht Pkup			0	0		dny	Underfir Sup Ht Pkup
1.91 1.91	cfm/ff					-(-)		0	0	0		Duct Heat Pkup
	% oA	0.00	0		Additional Reheat	. :		0	0	0		Ret. Fan Heat
Cooling Heating	SCHOOL SARVES	0.00	0		RA Preheat Diff.			0	0			Sup. Fan Heat
	İ	0.00	0		OA Preheat Diff.			Ŧ	-3,730	-3,730		Exhaust Heat
ENGINEERING CKS	Ž	-21.62	14,944		Exhaust Heat	-	1,090	0	0		0	Ov/Undr Sizing
		182.00	-125,827	-125,827	Ov/Undr Sizing			0	0		j.	Dehumid. Ov Sizing
	5	0	0	0	Adj Air Trans Heat	0	0	0	0		9	Adj Air Trans Heat
0 sdr	Leakage Ups	92.59	-64,015	0	Ventilation Load		0	19:	48,913	0		Ventilation Load
	Leakage Dwn		0	-15,017	Ceiling Load	2	3,019	0	0	-3,748	3,748	Ceiling Load
0	Auxiliary											
0	Rm Exh	-194.28	134,315	132,498	Sub Total ==>	73	132.498	28	146,215	1.817	144.398	Sub Total ==>
	Exhaust	-162.85	112,588	112,588	Misc	62	112,588	45	112,588	0	112,588	Misc
6.570 6.754	Refurn	-13.49	9,327	12,400	Lights	4 1~	12,400	4 0	9,327	/L8,L	7,510	Lights
o ;	_				IIITEIII TOANS							Internal Loads
985 985	AHU Vent											
982	Nom Vent	41.30	-28,553	-13,357	Sub Total ==>	74	44,255	24	60,858	26,803	34,055	Sub Total ==>
0	Sec Fan	00.0	0	0	Infiltration	0	0	0	0		0	Infiltration
	Main Fan	0	0	0	Adjacent Floor	0	0	0	0	0	0	Adjacent Floor
6,570 1,971	Terminal	00.0	0	0	Floor	0	0	0	0		0	Floor
	Diffuser	0.00	0	0	Partition/Door	0	0	0	0		0	Partition/Door
ž	3133334	17.49	-12.094	-7 497	Wall Cond	, rc	9 791	· · ·	15,710	6 788		Wall Cond
	4111531	00.0	5 860	-5 860	Glass/Door Cond	n C	70,55	n -	1 481		1.481	Glass Solar
0,400 12014		15.33	-10,599		RoofCond	0 9	0 22 20	ω σ	20,015	20,015	0 20 00	Roof Cond
			0	0	Skylite Cond	0	0	0	0	0	0	Skylite Cond
0.0 0.0	Fn Frict	0.00	0 1	0	Skylite Solar	0	0	0	0	0	0	Skylite Solar
0:0	Fn BldTD				Envelope Loads							Envelope Loads
0:0	Fn MtrTD	(%)	Btu/h	Btu/h		(%)	Btu/h	(%)	Btu/h	Btu/h	Btu/h	
80.3	Ret/OA	Of Total	Tot Sens	Space Sens		Of Total	Sensible	Of Total	Total	Sens. + Lat	Sens. + Lat.	
	Return	Percent	Coil Peak	Space Peak		Percent	Space	Percent	Net	Plenum	Space	
78.4	Ra Plenum											
				OADB: 11		2	OADB: 82		OADB/WB/HR: 91 / 73 / 96	OADBAWBA	Outside Air:	J
	SADB		ing Design	Mo/Hr: Heating Design		117	Mo/Hr: 9 / 17	87	Mo/Hr: 7/16	Mo/	Peaked at Time:	Peak
	SADB					FEAR	CLG SPACE PEAK			OIL PEAK	COOLING COIL PEAK	

			COOLING	COIL SELI	ECTIO	Z					AREAS	18		HEA:	TING COIL	SELECTION	N	
	Total C	Total Capacity	Sens Cap. Coi	y Sens Cap. Coil Airflow Enter DB/WB/HR	E .	er DB/M	B/HR	Leave	Leave DB/WB/HR	♀ .4	Gross Total	Glass #2	(6)		Capacity Coil Airflow Ent Lvg	Coil Airflow	<u>=</u>	Lvg Tu
	Ē	Ē	Ē	3	29	S.	2		<u>.</u>	2		1			Ē	5		
Main Clg	21.0	252.3	208.3	6,570	80.3	62.2	55.9	50.0 48	3.4 48		3,441			Main Htg	-65.1	1,971	50.0	80.0
Aux Clg	0.0	0.0	0.0		0.0	0.0	0.0	0.0 0.0	0 0.0	.0 Part				Aux Htg	0.0	0	0.0	0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0		0.0 Int Door				Preheat	4.0	6,570	49.4	50.0
										EXFI								
Total	21.0	252.3								Roof		0	0	Humidif	0.0	0	0.0	0.0
										Wall	2,800	280	2	Opt Vent	0.0	0	0.0	0.0
										Ext Door	r 0	0	0	Total	-69.1			

PSU ICE ARENA SPRING.TRC

Project Name: Dataset Name:

Page | 140 babyak schreffler sampson

Bypass VAV with Reheat (30% Min Flow Default)

0.0

0.0

0 22 0

3,669

Floor Part Int Door ExFir Roof Wall

Leave DB/WB/HR °F °F gr/lb 61.2 57.2 64.3 0.0 0.0 0.0

Enter DB/WB/HR °F °F gr/lb 75.8 62.5 64.3 0.0 0.0 0.0

444.7 0.0 0.0

Main Clg Aux Clg Opt Vent

9,377 61.2 0 0.0 31,258 61.1

(%) Glass ft²

PSU Ice Hockey Arena

System Checksums
By ACADEMIC

AHU-2

	T3 (0 "		_	_				2	2 2		22	0	32	32	0	22	24	88	0	0	0	0					10	_							LV S
	Heating 71.6	63.6 61.1	0.0	0.0	0.0			Heating	9 377	3 0	9,377		1.482	1.482		9,377	31,2	4,							S	Heating	4	3.41			-12.21		82	Ž	
TEMPERATURES	Cooling 61.2 75.7	75.7 75.8	0.0	0.0	0.0		AIRFLOWS	Cooling	31.258	31 258	31,258	0	1,482	1,482	0	9,377	31,258	1,482	0	0	0	0			ENGINEERING CKS	Cooling	4.7	3.41	775.12	227.27	52.80	183	ACITOD IDA	Coll Airflow	capacity coll Allifow
TEMF	SADB	Return Ret/OA	Fn MtrTD	Fn BldTD	Fn Frict		¥		Diffuser	Terminal	Main Fan	Sec Fan	Nom Vent	AHU Vent		MinStop/Rh	Return	Exhaust	Rm Exh	Auxiliary	Leakage Dwn	Leakage Ups	10 Sept. 10		ENGIN		% OA	cfm/ff	cfm/ton	ft²/ton	Btu/hr·ft²	No. People	NOTION OF ECTION	Tion of the control	capacity
		Percent Of Total	(%)	The control of the co	0.0	23.44	0.00	68.63	4.63	0.0	8.0	0.00	96.70			-25.35	-42.65	-5.41	-73.41		0.00	86.05	0	0.00	6.00 6.00	0.00	80.0	3	0.00	0.00		100.00] 5	=	
PEAK	g Design	Coil Peak Tot Sens	Btu/h		0 0	-26.225	0	-76,794	-5,181	-	o c	0	-108,200			28.367	47,715	6,058	82,140		0	-96,277	0	0	10,448	-	0 =	•	0	0		-111,889		-	2
HEATING COIL PEAK	Mo/Hr. Heating Design OADB: 11	Space Peak Space Sens	Btu/h					-76,794	-643	> 0) C	0	-77,436			25,457	47,715	6,058	79,230		-18,594	0	0	0								-16,801	VOLVE		GIUSS IOI GIASS
				Envelope Loads	Skylite Solar	Roof Cond	Glass Solar	Glass/Door Cond	Wall Cond	Partition/Door	Adjacent Floor	Infiltration	Sub Total ==>		Internal Loads	Lights	People	Misc	Sub Total ==>		Ceiling Load	Ventilation Load	Adj Air Trans Heat	Ov/Undr Sizing	Exhaust Heat	OA Preneat DIII.	Additional Peheat	Additional Person	Underfir Sup Ht Pkup	Supply Air Leakage		Grand Total ==>		00,000	LEAVE DEW BITE
EAK	/12	Percent Of Total	(%)		00	0	98	5	0 0	- ·	 o c	0	83			2	10	1	17		0	0	0	-	0							100.00		0.000	Feare
CLG SPACE PEAK	Mo/Hr: 10 / 12 OADB: 63	Space F Sensible C	Btu/h		0 0	0	407,866	-15,394	861	> 0	o c	0	393,333	2		25.457	47,715	6,058	79,230		1,121	0	0		0							473,684		07/0/70	ALIGN.
	2 1272	Percent Of Total	(%)	6	00	. 4	69	0	0 0	5 0	5 6	0	74		miele	9	18	-	52		0	-	0	0	00	5 C	 . c	0	0	0		100.00	NOIT	Entor De	EIIIEI UDWUNK
	Mo/Hr: 9/12 OADB/WB/HR: 78/63/64	Net Total	Btu/h		00	20.266	335,981	-12	1,879	o 0	o c	0	358.114	59		28.367	87,600	6,058	122,025		0	4,870	0	0	000	080,1-	0 =	0	0	0		483,923	NOT THE FET ECT ION	Coll Airflow	MOI WILLOW
OIL PEAK	Mo/ OADB/WB/F	Plenum Sens. + Lat	Btu/h		0 0	20.266	0	0	1,662		c	ò	21.928	*)		2.911	0	0	2,911		-1,933	0			000	-1,080	C	0		0		21,820	O IN IOOO	Sono Carried	Sells Cap.
COOLING CO	Peaked at Time: Outside Air:	Space Sens. + Lat.	Btu/h		0	0	335,981	-12	217	-	0 0	0	336,186			25.457	87,600	6,058	119,115		1,933	0	0		0				100			457,233		Minerac Jet	TOTAL CAPACILY
5	Peaked Out			Envelope Loads	Skylite Solar	Roof Cond	Glass Solar	Glass/Door Cond	Wall Cond	Partition/Door	Adiacant Floor	Infiltration	Sub Total ==>		Internal Loads	Lights	People	Misc	Sub Total ==>		Ceiling Load	Ventilation Load	Adj Air Trans Heat	Dehumid. Ov Sizing	Ov/Undr Sizing	Exnaust Heat	Dof Fan Heat	Duct Heat Pkin	Underfir Sup Ht Pkup	Supply Air Leakage		Grand Total ==>		2	2 .

TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012 Alternative - 1 System Checksums Report Page 4 of 12

PSU ICE ARENA SPRING.TRC Project Name: Dataset Name:

Page | 141

babyak sampson

TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012 Alternative - 1 System Checksums Report Page 5 of 12

PSU Ice Hockey Arena

System Checksums
By ACADEMIC

Space	Sens. *Lat. Sens. *Lat	COOLING COIL PEAK	EAK		CLG SPACE PEAK	PEAK		HEATING COIL PEAK	- PEAK		TEMP	TEMPERATURES	
Space Plenum Net Percent Space Percent Space Sens Total of Total of Total of Total of Sensible of Sensible of Total of Sensible of Sensible of Total of Sensible of Sensible of Sensible of Sensible of Total of Sensible	Space Plenum Net Percent Space Percent Space Plenum Total Or total Sensible OT total Burh Burh Burh (%) Burh (%) Purcent 5,86,846 0 0 0 0 0 0 6,063 0 0 0 0 0 0 0 6,01,308 10,817 16,216 1 5,308 1 11,447 -1 6,01,308 19,535 620,843 52 703,373 67 6,01,308 19,535 620,843 52 703,373 67 189,501 1 188,50 1 120,630 11 4,28,156 1,2,997 441,153 37 350,536 33 2,605 -2,605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 138,09		Mo/Hr: 7/10)B/WB/HR: 81/70	195	Mo/Hr. 6 / OADB: 76			Mo/Hr: Heati OADB: 11	ing Design		SADB Ra Plenum	Cooling 59.7 75.4	Heating 71.1
Sens.+Lat. Sens.+Lat. Total Of Total Sensible Of Total Sprise Sens. Total Of Total Sensible Of Total Sprise Sens. Total Of Total Sprise Solar Sprise Sens. Total Sens. Solar Sprise Sens. Total Sens. Total Sens. Solar Sprise Sens. Total Sens. Total Sens. Solar Sprise Sens. Total Sens. Tot	Sens.+Lat. Sens.+Lat		-			Percent		Space Peak		Percent	Return	75.4	63.2
Stuff Stuf	Buuh Buuh Buuh (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	555		of Total		Space Sens		Of Total	Ret/OA	75.9	58.9
See 846 See	60.805 12.997 73.802 6 60.805 6 12.897 441.153 37 350.506 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Btu/h			Btu/h	喝		Btu/h	Btu/h	%	Fn MtrTD	0.0	0.0
See Substitute Solution Council Co	586.846					Enve	slope Loads		1	***************************************	Fn BldTD	0.0	0.0
See	586.846	00	00	00	00	o c	cylite Solar	00	00	00.0	Fn Frict	0.0	0.0
See Sec Sec Sec Sec Sec Sec Sec Sec Sec	5.986.846			- C			Syllie Colld		-14 666	5.47			
9,063 0 9,063 1,1447 -1 Glass/Door Cond -150,122<	9,063 1 -11,147 -1 5,399 10,817 16,216 1 5,308 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	586,846			709,212		ass Solar	0	0	0.00	AIF	AIRFLOWS	
1,0,0,0 1,0,0,0,0 1,0,	5,399 10,817 16,216 1 5,308 1 1 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9,063		33	-11,147	ō :	lass/Door Cond	-150,122	-150,122	55.98		Cooling	Heating
601,308	601,308 19,535 620,843 52 703,373 67 60,805 12,997 73,802 6 60,805 67 189,250 17,997 441,153 37 350,536 33 10,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	995,3			808,308		all Cond	728'9-	-18,819	7.07	Diffuser	62,698	18.809
601,308 19,535 620,843 52 703,373 67 Infiltration	601,308 19,535 620,843 52 703,373 67 60,805 12,897 73,802 6 60,805 67 60,805 189,250 17 120,630 11 189,101 16 189,101 16 189,101 16 189,101 16 189,101 16 189,101 16 189,101 16 189,101 16 189,101 17 189,101 16				5 C		artition/Door	-	o c	8 8	Termina	62 698	18 809
601,308	60.805 12.997 73.802 6 60.805 6703.373 677046 1197.676 610 100.00	nt Floor			o c		diacent Floor	, c	0 0	900	Main Fan	62,698	18,809
601,308 19,535 620,843 52 703,373 67 Sub Total ==> -156,349 -183,607	60,805 12,997 73,802 6 60,805 6 198,250 11 14 169,101 1	o loi			0		filtration	0	0	0.00	Sec Fan	0	0
12,997 73,802 6 60,805 6 Lights 12,097 73,802 6 60,805 6 Lights 12,097 120,630	60.805 12.897 73.802 6 60.805 6 189.250 17 120.630 11 14 189.101 169.101 14 169.101 16	601,308			703,373	: 151 : 515	ub Total ==>	-156,949	-183,607	68.46	Nom Vent	5,141	5,141
12,997 73,802 6 60,805 60,805 73,802 120,630 120,6	60,805 12,997 73,802 6 60,805 6 60,805 6 60,805 188,250 17 120,630 11 169,101 14 169,101 16 169,101 14 169,101 16 169,101 14 169,101 16 169,101 16 169,101 16 169,101 16 169,101 16 169,101 16 169,101 16 169,101 16 169,101 16 169,101 16 169,101 16 169,101 16 169,101 169,1										AHU Vent	5,141	5,141
12,997 73,802 6 60,805 6 Lights 60,805 73,802 189,250	60.805 12.997 73.802 6 60.805 6 1982 6 198.250 17 12.0530 11 189.101 14 128.101 14 12.997 441.153 37 350.536 33 12.805 6 12.997 441.153 37 350.536 33 12.805 6 12.997 441.153 37 350.536 33 12.805 6 12.997 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Loads		-(-)-		Inter	nal Loads				IIJIII	0	0
1882-55	198.250	60,805			60,805		ghts	60,805	73,802	-27.52	MinStop/Rh	18,809	18,809
169,101	198-101 0 168-101 14 169-101 16 428,161 16 16 12,997 441,153 37 350,536 33 16 16 16 16 16 16 16 16 16 16 16 16 16	198,250			120,630		3ople	120,630	120,630	-44.98	Return	62,698	62,886
428,156 12,997 441,153 37 350,536 33 Sub 7dat => 350,536 363,533 - 2,605 -2,605 0 0 2,663 0 Celling Load -40,849 0 0 0 0 Ventilation Load -40,849 0 0 0 0 Ventilation Load -40,849 0 0 0 0 Ventilation Load -40,849 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,805 -2,605 0 0 2,663 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	169,101	0 169,10		169,101	4	Sc	169,101	169,101	-63.05	Exhaust	5,141	5,329
2,605 -2,605 0 0 2,663 0 Ceiling Load -40,849 0 0 0 138,097 12: 0 0 Verniation Load 0 0 33,975 0 0 0 Auf Air Trans Heat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.605 -2.605 0 0 2.663 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	428,156			350,536	4	ub Total ==>	350,536	363,533	-135.55	Rm Exh	0	0
2,605 2,605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,605 -2,605 0 0 2,663 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		No. of Concession, Name of Street, or other Persons, Name of Street, or ot						ć		Auxiliary	0 (0 1
0	up 0 0 138,097 12; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,605			2,663		ng Load	-40,849	7	0.00	Leakage Dwn	2	-
O	up 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0		lation Load	0	-333,975	124.53	Leakage Ups	0	0
Ovivides	ang 0 2.2462 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	h			0		Air Trans Heat	0 0	o (0 0			
0	Pkup 100 100 100 100 100 100 100 1	Sung		,			Indr Sizing		0 00	0.00	2		
Pkup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0			38		sust Heat		38,604	0.00	ENGIN	ENGINEERING CKS	S
O 0 0 O O O O O O O O	PKup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					RAP	reheat Diff.		-152.737	56.95		Cooling	Heating
Pkup 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Heat				Addi	tional Reheat		0	0.00	% OA	8.2	8.2
Pkup 0 0 Underfir Sup Ht Pkup 0 0 age 0 0 Supply Air Leakage 0	Age 0 0 0 0 age 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	at Pkup				-101					cfm/ff²	3.32	3.32
age 0 0 0 Supply Air Leakage 0	Age 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sup Ht Pkup				Ond	erfir Sup Ht Pkup		0	0.00	cfm/ton	628.22	
estimated designations to the contraction of the co	1 032 069 27 466 1 197 632 100 00 1 056 610	Air Leakage				dns	oly Air Leakage		0	0.00	ff*/ton	189.41	5
27.466 1.197.632 100.00 1.056.610 100.00 Grand Total ==> 152.737 -268.182	010,000,1	1,032,069		32 100.00	1.056.610	100.00 Gran	d Total ==>	152,737	-268,182	100.00	No. People	491	4.01

П																			ı
			COOLING	COIL SELI	ECTIO	z						AREAS	S		HEAT	ING COIL	SELECTIO	z	
	Total (Sens Cap.	Coil Airflow	Ente	Pr DB/WE	3/HR	Lea	ve DBA	VB/HR		oss Total				Capacity	Coil Airflow	E	_
	ton	on MBh	MBh cfm °F °F gr/lb	ctm	Ļ	Ļ	gr/lb	Ľ.	Ļ	°F °F gr/lb			4	(%)		MBh	MBh cfm °F	۴	
	8.66		1,015.3	62,698	75.9	63.2	67.5	59.7	59.7 56.9	65.7	Floor	18,904			Main Htg	-236.7	18,809	59.7	1
	0.0		0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Part	0			Aux Htg	0.0	0	0.0	
	0.0		0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Int Door	0			Preheat	-54.8	62,698	58.9	rO
											EXFIR								
	8.66	1,197.6									Roof		0	0	Humidif	0.0	0	0.0	
											Wall	10,980	7,173	65	Opt Vent	0.0	0	0.0	
											Ext Door		0	0	Total	-291.4			
ı																			ı

PSU ICE ARENA SPRING.TRC Project Name: Dataset Name:

Page | 142

babyak sampson

Bypass VAV with Reheat (30% Min Flow Default)

TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012 Alternative - 1 System Checksums Report Page 6 of 12

0.0

0.0

14,121 55.0 0 0.0 47,069 54.3

PSU Ice Hockey Arena

System Checksums
By ACADEMIC

AHU-4

TEMPERATURES	¥	75.4 6	0.0		2	SWC ISBI		Difference A7 069 14 121	47,009	Main Fan 47,069 14,121	Sec Fan 0 0		AHU Vent 6,543 6,543		o'Rh 14,121	47,069 4	Exnaust 6,543 8,808	Rm Exh 0 0	Lostone Dum	Leakage Dwn			ENGINEERING CKS	Cooling		1.76	cfm/ton 500.45	284.66	Btu/hr-ft² 42.16 -10.33	No. People 378	HEATING COIL SELECTION	Capacity Coll Airflow Ent Lvg	
		Percent Of Total	(%)	000	0.00	0.0	43.67	0.67	0.00	00.0	0.00	44.34			-34.79	-34.77	-52.39	-121.96	0	156.69	0	0.00	-23.23	0.00	0 6	3	0.00	0.00		100.00			
L PEAK	ting Design	Coil Peak Tot Sens	Btu/h	_	0	00	-118.460	-1,824	0	o c	0	-120,284			94,383	94,325	142,112	330,820	c	-425.038	0	0	63,022	0 701	-119,/81	o	0	0		-271,261		Glass	
HEATING COIL PEAK	Mo/Hr. Heating Design OADB: 11	Space Peak Space Sens	Btu/h	6	00		-118,460	0	0	5 C	. 0	-118,460			76,016	94,325	142,112	312,453	74743	0	0	0								119,781	AREAS		200000000000000000000000000000000000000
				Envelope Loads	Skylite Cond	Roof Cond	Glass/Door Cond	Wall Cond	Partition/Door	Floor Adjacent Floor	Infiltration	Sub Total ==>	10 00 00 00 00 00 00 00 00 00 00 00 00 0	Internal Loads	Lights	People	MISC	Sub Total ==>	Colling Load	Ventilation Load	Adi Air Trans Heat	Ov/Undr Sizing	Exhaust Heat	OA Preheat Diff.	RA Preneat DIII.	Pagillalia Pelleat	Underfir Sup Ht Pkup	Supply Air Leakage		100.00 Grand Total ==>		Leave DB/WB/HR	i i
PEAK	1/15	Percent Of Total	(%)	`c	00	0 0	0 0	0	0	0 0	0	. 29			7	o :	4	8	•		0 0		2							100.00		Leave	N.50
CLG SPACE PEAK	Mo/Hr: 11 / 15 OADB: 62	Space Sensible	Btu/h		00	0 002	-1.398	0	0	50	0	699,572			76,016	94,325	142,112	312,453	2044	2,941	0.0		21,534							1,036,501		Enter DB/WB/HR	i in
	o esecut	Percent Of Total	(%)	C	0	9,0	3 6	0	0	0 0	0	35			80	4	<u> </u>	32	c	300	3 0	0	0	0 0) C	0	0	0		100.00	CTION	Enter DE	
	Mo/Hr: 7/16 OADB/WB/HR: 91/73/96	Net Total	Btu/h	-	0	0 257 306	29,937	2,536	0	o c	0	389,779			94,383	160,850	142,112	397,345	c	344 019		0	0	-2,497		0	0	0		1,128,646	COOLING COIL SELECTION	Coil Airflow	
OIL PEAK	Mo. OADBAWBA	Plenum Sens. + Lat	Btu/h		0			2,536		O	i i	2,536			18,367	0 (18,367	0700	-2,940				-2,497	c	0		0		15,467	COOLING	Sens Cap.	i
COOLING COIL PEAK	Peaked at Time: Outside Air:	Space Sens. + Lat.	Btu/h	0		367 306	29,937	0	0	00	0	387,242			76,016	160,850	142,112	378,978	070.0	2,940			0							769,161		Total Capacity	
-	Peakec Ou			Envelope Loads	Skylite Cond	Roof Cond	Glass/Door Cond	Wall Cond	Partition/Door	Floor Adjacent Floor	Infiltration	Sub Total ==>		Internal Loads	Lights	People	MISC	Sub Total ==>	Colling Load	Ventilation Load	Adi Air Trans Heat	Dehumid. Ov Sizing	Ov/Undr Sizing	Exhaust Heat	Sup. Fan Heat	Duct Heat Pkup	Underfir Sup Ht Pkup	Supply Air Leakage		Grand Total ==>		ř	EG:

		Main Ht	Aux Htg	Preheat		Humidif	Opt Ven	Total
	(%)					0	93	0
gas	2					0	2,660	0
oss Total		26,773	0	0	0	0	090'9	0
		Floor	Part			Roof	Wall	Ext Door
WB/HR	°F gr/lb	51.7	0.0	0.0				
e DB	۴	51.5	0.0	0.0				
Leav	ŗ.	55.0	0.0	0.0				
B/HR	gr/lb	51.7	0.0	0.0				
er DB/W	۴	60.3	0.0	0.0				
Ē	۳	77.5	0.0	0.0				
Coil Airflow	h cfm °F °F gr/lb	47,069	0	0				
Sens Ca	MB	829.	0	0				
Capacity	ton MBh	1,128.7	0.0	0.0		1,128.7		
Total	ton	94.1	0.0	0.0		94.1		

Main Clg Aux Clg Opt Vent

Project Name: PSU ICE ARENA Dataset Name: SPRING.TRC

Page | 143

babyak | sam

sampson

Bypass VAV with Reheat (30% Min Flow Default)

TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012 Alternative - 1 System Checksums Report Page 7 of 12

PSU Ice Hockey Arena

System Checksums
By ACADEMIC

AHU-5

	COOLING COIL PEAK	OIL PEAK			CLG SPACE PEAK	: PEAK		HEATING	HEATING COIL PEAK	دي		TEMPI	TEMPERATURES	te:
Peaked	Peaked at Time:	Mo	Mo/Hr: 7/17	8 6	Mo/Hr: 9 / 17	9/17		Mo/Ht	Mo/Hr: Heating Design	ПĘ			Cooling	Heating
ō	Outside Air:	OADB/WB/	OADB/WB/HR: 89 / 72 / 92	2	OADB: 82	82		OADB: 11	Ę.			SADB	60.1	72.0
	CONSTRUCTION -		i									Ra Plenum	75.3	83.8
	Space	Plenum	Net	Percent	Space			Space Peak			Percent	Return	75.5	50.50
	Sells. T Lat.	Sells. + La	Total	Of Total	Sensible	of Total		Space Sens	Ī		Of Total	Kenok	6.0	0.70
	Btu/h	Btu/h	Btu/h	%)	Btu/h	(%)		Btu/h		Btu/h	(%)	Fn MtrTD	0.0	0.0
Envelope Loads							Envelope Loads	1				Fn BldTD	0.0	0.0
Skylite Solar	0	0	0	0	0	0	Skylite Solar			0	0.00	Fn Frict	0.0	0.0
Skylite Cond	0	0	0	0	0	0	Skylite Cond			0	0.00			
Roof Cond	0	0	0	0	0	0	RoofCond		0	0	0.00			
Glass Solar	296,917	0	296.917	33	429,936	57	Glass Solar			0	0.0	AIR	AIRFLOWS	
Glass/Door Cond	19,327	0	19,327	2.	7,097		Glass/Door Cond	ond -79,029			27.80		Guilean	Hoofing
Wall Cond	6,587	10,369	16,957	2:	7,351	÷	Wall Cond	-5,676	5 -13,740		4.83		46 115	40 005
Partition/Door	0		0	0	0	0	Partition/Door			0	0.00	DILLINSEL	40,110	13,835
Floor	0		0	0	0	0	Floor		_	0	0.00	Terminal	46,115	13,835
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	_		0	0	Main Fan	46,115	13,835
Infiltration	0		0	0	0	0	Infiltration			0	0.00	Sec Fan	0	0
Sub Total ==>	322,831	10,369	333,201	37	444,384	29	Sub Total ==>	-84,705	5 -92,769		32.63	Nom Vent	5,521	5,521
				*(8)			0000					AHU Vent	5,521	5,521
Internal Loads				niele			Internal Loads					Infil	0	0
Lights	56.376	4.801	61.177	. 2	56.376	7	Lights	56.376		61.177 -2	.21.52	MinStop/Rh	13,835	13,835
People	182,250	0	182,250	20	106,925	14	People	106,925	•		-37.61	Return	46,115	47,134
Misc	148,878		148,878	16	148,878	20	Misc	148,878	3 148,878		-52.37	Exhaust	5,521	6,540
Sub Total ==>	387 504	4 801	392 305	43	312 179	741	Sub Total ==>		316 980		-111 50	Rm Exh	0	0
Cally Total	ton, 100		205,260	?	517,119		Caro rotal —				5	Auxiliary	0	0
Ceiling Load	1 688	-1 688	C	0	1 686	c	Ceiling Load	-39.764	_	0	00.00	Leakage Dwn	0	C
Ventilation Load	0		188 777	2.7.	000	0 0			0 -358.690	-	126.17	Pakane IIns	C	· C
Adi Air Trans Heat	9			i					0		0	ode offernor	•	•
Dehimid Ov Sizing	,			9			Ov(Undr Sizing		0	0	000			
Ov/Undr Sizing	0		0	0	29	0			37,5	37,906 -1	13.33	HNUUH	FNGINFFRINGCKS	v
Exhaust Heat		-1,610	-1,610	0			OA Preheat Diff.				0.00			,
Sup. Fan Heat			0	0			RA Preheat Diff.		-187,711		66.03		Cooling	Heating
Ret. Fan Heat		0	0	0		* *	Additional Reheat	sat		0	0.00	% OA	12.0	12.0
Duct Heat Pkup		0	0	0		5(5)						cfm/ff²	2.29	2.29
Underfir Sup Ht Pkup	120		0	0			Underfir Sup Ht Pkup	t Pkup		0	0.00	cfm/ton	606.33	
Supply Air Leakage		0	0	0		9-77-	Supply Air Leakage	age		0	0.00	ft²/ton	264.63	
				***		-						Btu/hr·ft2	45.35	-15.67
Grand Total ==>	712,024	11,873	912,674	100.00	758,317	100.00	100.00 Grand Total ==>	187,711	1 -284,283		100.00	No. People	430	
		IIOD ING COL		NOIT DE 130				SYDON	U		בוני בוני	O IIOO CINITVAN	NOITON IDS	

																			1
			COOLING	COOLING COIL SELECTION	ECTIO	z				170,001	AREAS	SI		HE	ATING COIL	SELECTIV	N _C		
	Total	Capacity	Sens Cap.	Coil Airflow	Ente	r DB/W	B/HR	Leave	Leave DB/WB/HR		Gross Total	Glass			Capacity	Coil Airflow	듑	Ţ	6/
	ton	ton MBh	MBh	cfm °F °F gr/lb	L.	Ļ	gr/lb	Ľ Ľ	F gr/lb			#	(%)		MBh cfm °F °F	cfm	•	<u>ь</u>	Ļ.
Main Clg	76.1	912.7	734.8	46,115	6.97	63.7	68.1	60.1 57.2			20,127			Main Htg	-182.4	13,835	60.1	72.	0
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0		Part	0			Aux Htg	0.0	0	0.0	o	0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	Int Door	0			Preheat	-133.0	46,115	57.5	.09	-
										ExFIr	0								
Total	76.1	912.7								Roof	0	0	0	Humidif	0.0	0	0.0	o	0.0
										Wall	6,520	3,776	28	Opt Vent	0.0	0	0.0	o.	0
										Ext Door	0	0	0	Total	-315.3				
																			Ì

PSU ICE ARENA SPRING.TRC Project Name: Dataset Name:

Page | 144

babyak

sampson

schreffler

System Checksums
By ACADEMIC

AHU-6										Bypass	VAV wit	Bypass VAV with Reheat (30% Min Flow Default)	Min Flow	Default)	_
	COOLING	COOLING COIL PEAK			CLG SPACE PEAK	PEAK			HEATING COIL PEAK	OIL PEAK		TEMF	TEMPERATURES	.	
Pe	Peaked at Time:	Medano	Mo/Hr: 7/14	5	Mo/Hr. 7 / 15	7/15			Mo/Hr: He	Mo/Hr: Heating Design		0	Cooling	Heating	-
	Outside All.	dynad dyna	MIN. 317747	701	CADB.	<u>.</u>						Ra Plenum	75.0	6.89	100 0470
	Space				Space	Percent			Space Peak	Coil Peak		Return	75.0	68.9	1008
	sens. + Lat.	Sens.	Total	ŏ	Sensible	Of Total			Space Sens	Tot Sens	ŏ	Retion	88.5	- 00	
	Btu/h	h Btu/h	Btu/h	(%)	Btu/h	(%)	-		Btu/h	Btu/h	(%)	Fn MtrTD	0.0	0.0	
Shylito Color				C	6	•	Envelope Loads	oads.	C		0	TII DIGILD	9 0	9 6	ormes.
Skylite Cond				00	•	0	Skylite Cond	ond	0	0		_	2	0.0	. 1
Roof Cond		4		0	0	0	RoofCond	Į.		0					
Glass Solar				0	0	0	Glass Solar	olar	0	0			AIRFLOWS		
Glass/Door Cond				0	0	0	Glass/D(Glass/Door Cond		0	0.00		Cooling	Heating	0
Wall Cond			00	 O C	00	 O c	Wall Cond	ld roof	00	00		Diffuser	16,425	4,927	0 [-
FarmonyDoor		o (o c	5 0	o c	 - c	Floor	Door	o c	00			16.425	4 97	7
Adjacent Floor		0	00	0	0	0	Adjacent Floor	Floor	0	0			16,425	4,928	. 00
Infiltration			0	0	0	0	Infiltration		0	0	Ö	Sec Fan	0		0
Sub Total ==>	J	0 0	0	0	0	0	Sub Total ==>	< == /₽	0	0	0.00	Ξ	14,248	793	<u>ო</u>
				TO S		ielei						AHU Vent	14,248	793	2
Internal Loads				niele			Internal Loads	ads				IIJUI	0	_	0
Lights	18 951	1 207	19 158		18 951	16			18 951	19 158	-2 11	MinStop/Rh	4.927	4,927	7
People	39,800		39,800	· œ	19,990	16			19,990	19,990		_	16,425	16,647	7
Misc	81,934		81,934		81,934	29	4		81,934	81,934	-9.04		14,248	1,014	4
Sub Total ==>	140,685	5 207	140,892	30	120,875	100	Sub Total ==>	/ == /u	120,875	121,082	-13.36		0	-	0
			No.							2		_	0 (₩.	0
Ceiling Load	21	1 -21		0 ;	727	0	Celling Load	pe.	-2,230	0 0	0.00	_	0	-	0
Ventilation Load			330,280	70	0	0	Ventilation Load	Load		UUC, TC-	2.08	Leakage Ups	0	7	0
Adj Air Trans Heat				0	0	0	Adj Air Trans Heat	ns Heat	0	0 0	0 0				
Dehumid, Ov Sizing			0	0			8	zing		0.65					
Ov/Undr Sizing	_	0	180	00	538	0	Exhaust Heat	eat		930	01.0-		ENGINEERING CKS	S	
Sup. Fan Heaf		2	-	0			RA Preheat DIII			-128.262			Cooling	Heating	-
Ret. Fan Heat		0	0	0		-1917	Additional Reheat	Reheat		0	0.00		2.98	4.8	HINALST A
Duct Heat Pkup		0	0	0		-(-)							2.49	2.49	1040
Underfir Sup Ht Pkup	skup -		0	0			Underfir St	Underfir Sup Ht Pkup		0			418.46		
Supply Air Leakage	ge	0	0	0			Supply Air Leakage	Leakage		0	0.00	_	168.30		
			į		3		9	75				_	71.30	-137.22	1900000
Grand Total ==>	140,707	7 24	471,012	100.00	121,434	100.00	Grand Total ==>	/== /e	118,645	-906,489	100.00	No. People	29		
		COOLING	COOLING COIL SELECTION	ECTION					AREAS		I	HEATING COIL SELECTION	SELECTION	_	
	Total Capacity		Coil Airflow	Enter D	B/WB/HR	Leave	Leave DB/WB/HR		Gross Total	Glass		Capacity	Coll Airflow	Ent	DΛ
	ton MBh	MBh		Ļ	°F gr/lb	Ľ.	°F gr/lb			ff ² (%)		MBh	cfm		DIL.
Main Clg	39.3 471.0	364.1	16,425	88.5 73	73.3 101.0	68.3 65.7	5.7 92.1	Floor	909'9	3141	Main Htg	£.6-	4,927 6	68.3 70	0.07
Opt Vent						0.0		Int Door	0	771111	Preheat	-897.2	16,425 1	_	68.3
No. of the second secon	3							ExFir	01			ć			

2	0
9/2012	8 of 12
n 04/1	Dane 8 of
6 PM on	poor
01:36	ackeiime Ranoi
ed at	Jacker
alculat	om C
2.6.5 ℃	Sylve
9,0	. 47
30 700	arnati
TRACE®	ΑH
Н	

0.0 16,425 18.7

000

Floor Part Int Door ExFir Roof Wall

> PSU ICE ARENA SPRING.TRC Project Name: Dataset Name:

Page | 145

babyak sampson schreffler

System Checksums
By ACADEMIC

babyak

AHU-7											Bypass \	AV with	Bypass VAV with Reheat (30% Min Flow Default)	Min Flow [efault)	
	COOLING (COOLING COIL PEAK			CLG SPACE PEAK	CE PEAK			HEA.	HEATING COIL PEAK	PEAK		TEMP	TEMPERATURES	2	
Peal	Peaked at Time: Outside Air:	Mc OADB/WB/	Mo/Hr: 7/14 OADB/WB/HR: 91/74/102	02	Mo/Hr: 7 / OADB: 91	Mo/Hr. 7 / 15 OADB: 91	10 0000		_0	Mo/Hr: Heating Design OADB: 11	g Design		SADB	Cooling 57.4	Heating 70.0	000000000
	į		1		í					í			Ra Plenum	75.2	65.1	
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	e Percent			Space	Space Peak Space Sens	Tot Sens	Percent Of Total	Ret/OA	87.1	23.3	pt -17 *
	Btu/h	2000	Btu/h	(%)	Btu/h	1000				Btu/h		(%)	Fn MtrTD	0.0	0.0	p() 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Envelope Loads								Envelope Loads			ğ	1	Fn BldTD	0.0	0.0	
Skylite Solar Skylite Cond	0.0	0 0	00	00		00		Skylite Solar		0 0	0 0	00.0	Fn Frict	0.0	0.0	
Roof Cond	00	4	0	0				Roof Cond			0	0.00				
Glass Solar			0	0				Glass Solar		0	0	0.00	AIF	AIRFLOWS		
Glass/Door Cond				00				Glass/Door Cond	puo	00	0 0	0.00		Cooling	Heating	5
Partition/Door	00		o c	 	_			wall cond Partition/Door) (o c	0.00	Diffuser	6,707	2,012	7
Floor	0		0	0	_	0		or		0	0	0.00	Terminal	6,707	2,012	00
Adjacent Floor	0 (0	0 (0		0 0	7227	Adjacent Floor	.	0 (0 0	0 0	Main Fan	0.5	2,012	v c
Infiltration	0 0		0 0	0 0		0 0		Intiltration		-	o c	0.00	Sec Fan	0 77	0 0	٠.
Sub total ==>	0	D	0	5	-	0		0 10tal ===		5	5	0.00	Nom Vent	5,213	5,186	9 0
Internal Loads				BITITL			Intern	Internal Loads					AHU vent	5,213	3,186 0	9 0
14111	100		1000	(71			0.075	5	7007	100	0	Din Chan (Din	2012	2 042	
Lights	76,250	1,942 0	79,607	23.0	17,665	5 34 4		Lignts People	- 4	17,665 44,115	19,607	-6.97	Minstop/Kn Return	6,707	9,963	v رد
Misc	47,369		47,369	14	47,369			ر .	7	47,369	47,369	-16.84	Exhaust	5,213	8,442	7
Sub Total ==>	141,284	1,942		43	109,149		•	Sub Total ==>		109,149	111,091	-39.49	Rm Exh	0	0	0
		1					-				100	9.00	Auxiliary	0	0	0
Ceiling Load	440	4	0	0	43.	0 6		Ceiling Load		-10,512	0	0.00	Leakage Dwn	0	0	0
Ventilation Load		0	190,661	27	0			Ventilation Load		5 (-336,934	119.78	Leakage Ups	0	0	0
Adj Air Trans Heat	9		0	0		0 0		Adj Air Trans Heat	at	-	0 0	0 0				\neg
Dehumid. Ov Sizing			0 (0 0			0E	Ov/Undr Sizing		5	000	0.00	j		,	
Exhaust Heat	D	-1.168	-1.168	00	20,772	91 7		Exnaust Heat OA Preheat Diff			-1.378	0.49	ENGIN	ENGINEERING CKS	S	
Sup. Fan Heat			0	0			RAP	RA Preheat Diff.			-98,869	35.15	1000	Cooling	Heating	1000
Ret. Fan Heat		00	00	0 0			Additi	Additional Reheat	at		0	0.00	% OA	7.77 0.98	0.98	2000 A
Underfir Sup Ht Pkup	dny	•	0	0			Onde	Underfir Sup Ht Pkup	Pkup		0	0.00	cfm/ton	241.91		
Supply Air Leakage	. <u>a</u>	0	0	0			adns	Supply Air Leakage	ade		0	0.00	ft²/ton	245.86		
									'n				Btu/hr·ft²	48.81	41.26	
Grand Total ==>	141,723	335	332,719	100.00	130,360	0 100.00		Grand Total ==>		98,637	-281,289	100.00	No. People	178		
			/n	ECTION					A	AS		里	HEATING COIL SELECTION	SELECTION	<u> Antonio</u>	
	Total Capacity ton MBh	Sens Cap. MBh	Coil Airflow cfm	Enter D	Enter DB/WB/HR °F °F gr/lb	Leave	Leave DB/WB/HR °F °F gr/lb	B/HR gr/lb	Gross Total	otal Glass ft²	(%) s:		Capacity C MBh	Capacity Coil Airflow MBh cfm	E.	Z.
Main Clg	27.7 332.7	198.9	6,707	87.1 72	72.1 95.9	57.4 57.3		71.4	Floor 6,8	6,817	M.	Main Htg	-28.0	2,012 5	57.4 70.0	0.0
Opt Vent			0						Int Door	. 0	ā	Preheat	-253.3			4
Wind the first and proposed to									ExFir	0						

culated at	04/19/201	Chan O and
6.5 calculated	at 01:36 PM on (10000
	v6.2.6.5 calculated	C. Charles

0.0 6,707 23.1

000

Floor Part Int Door ExFir Roof Wall

Total Capacity
ton MBh
27.7 332.7
0.0 0.0
0.0 27.7 332.7

PSU ICE ARENA SPRING.TRC Project Name: Dataset Name:

Page | 146 schreffler sampson

Bypass VAV with Reheat (30% Min Flow Default)

TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012 Alternative - 1 System Checksums Report Page 10 of 12

PSU Ice Hockey Arena

System Checksums
By ACADEMIC

AHU-8

RES	£	75.3 67.2					0.0 0.0			δ	Cooling Heating	5,097 1,529	5,097 1,529		0	3,889 3,889	3,889 3,889	0	1,529 1,529		,889 6,293		0	0	0			3 CKS	ng Heating	76.3 76.3	0.83 0.83	28		.05 -36.85	158
TEMPERATURES	Cooling 62.3									AIRFLOWS	000	920										-	2	eakage Dwn	e Ups			ENGINEERING CKS	Cooling	7			e	K	
	SADB	Ra Plenum	Return	Ret/0A	Fn MtrTD	Fn BldTD	Fn Frict			2010000		Diffuser	Terminal	Main Fan	Sec Fan	Nom Vent	AHU Vent	IIJII	MinStop/Rh	Return	Exhaust	Rm Exh	Auxiliary	Leakag	Leakage Ups	5				% OA	cfm/ft²	cfm/ton	ft²/ton	Btu/hr·ft2	No. People
			Percent	Of Total	(%)		0.00	0.00	0.00	0.00	0.00	00.0	0.00	0	0.00	0.00			-8.10	-17.72	-3.20	-29.02		0.00	111.82	0	0.00	-8.49	25.69	00.0	!	0.00	0.00		100.00
. PEAK	ing Design		Coil Peak	Tot Sens	Btu/h		0	0	0	0	0 (o c	0	0	0	0			18,302	40,035	7,230	65,567		0	-252,648	0	0	19,179	-58.040	0	Ì	0	0		-225,943
HEATING COIL PEAK	Mo/Hr. Heating Design OADB: 11		Space Peak	Space Sens	Btu/h		0	0	0	0		5 C	00	0	0	0			16,190	40,035	7,230	63,455		-5,415	0	0	0								58,040
						Envelope Loads	Skylite Solar	Skylite Cond	RoofCond	Glass Solar	Glass/Door Cond	Wall Cond	Floor	Adjacent Floor	Infiltration	Sub Total ==>		Internal Loads	Lights	People	Misc	Sub Total ==>		Ceiling Load	Ventilation Load	Adj Air Trans Heat	Ov/Undr Sizing	Exhaust Heat	RA Preheat Diff.	Additional Reheat		Underfir Sup Ht Pkup	Supply Air Leakage		100.00 Grand Total ==>
PEAK	7 / 15		Percent	Of Total	(%)		0	0	0	0	0	o c	0	0	0	0			23	26	10	88			0	0		=		100	5(5)				100.00
CLG SPACE PEAK	Mo/Hr: 7 / 15 OADB: 91		Space	Sensible	Btu/h		0	0	0	0	0	0 0	0	0	0	0			16,190	40,035	7,230	63,455		543	0	0		7,514							71,512
U	22		Percent	Of Total	(%)		0	0	0	0	0 0	 o c	0	0	0			-12.1	 თ	35	4	48		0	53	0	0	0+	0	0	0	0	0	**	100.001
	Mo/Hr: 7/14 OADB/WB/HR: 91/74/102		Net	Total	Btu/h		0	0	0	0			0	0	0	0			18,302	71,200	7,230	96,732		0	107,095	0	0	1 107	0	C	0	0	0		202,631
OIL PEAK	Mo/F OADB/WB/H		Plenum	Sens. + Lat	Btu/h		0	0	0 / /			O		0		0			2,111	0	0	2,111		-543	0			1 107	1,1	c	0		0		372
COOLING COIL PEAK	Peaked at Time: Outside Air:		Space	Sens. + Lat.	Btu/h		0	0	0	0	2	o c	0	0	0	0			16,190	71,200	7,230	94,620		543	0	0		0							95,163
J	Peaked Out					Envelope Loads	Skylite Solar	Skylite Cond	Roof Cond	Glass Solar	Glass/Door Cond	Vvall Cond	Floor	Adjacent Floor	Infiltration	Sub Total ==>		Internal Loads	Lights	People	Misc	Sub Total ==>		Ceiling Load	Ventilation Load	Adj Air Trans Heat	Dehumid. Ov Sizing	Ov/Undr Sizing	Sun Fan Heat	Ret Fan Heat	Duct Heat Pkup	Underfir Sup Ht Pkup	Supply Air Leakage	O ROBINS	Grand Total ==>

										8				8					
			COOLING	COIL SEL	ECTIO	_						AREAS			/3H	ATING COIL S	SELECTION	_	
	Total (Total Capacity	Sens Cap.	Sens Cap. Coil Airflow Enter DB/WB/HR Leave DB/M MBh cfm °F °F gr/lb °F °F	F	r DB/WE	s/HR ar/lb	Leav	Leave DB/WB/HR	B/HR ar/lb	ō	Gross Total	Glass	(%)		Capacity Coil Airflow Ent Lvg	oil Airflow	i .	Lvg
Main Clg	16.9		130.7	5,097	86.9	72.5	98.6	62.3	61.3	80.9	Floor	6,131		for t	Main Htg	-13.0	1,529 6	32.3	70.0
Aux Clg	0.0		0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Part	0			Aux Htg	0.0	0	0.0	0.0
Opt Vent	0.0		0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Int Door	0			Preheat	-212.9	5,097	24.3	62.3
											ExFIr	0							
Total	16.9	202.6									Roof	0	0	0	Humidif	0.0	0	0.0	0.0
											Wall	0	0	0	Opt Vent	0.0	0	0.0	0.0
											Ext Door	0	0	0	Total	-225.9			

PSU ICE ARENA SPRING.TRC Project Name: Dataset Name:

Page | 147

babyak sampson schreffler

TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012 Alternative - 1 System Checksums Report Page 11 of 12

BIM Thesis Final Report

PSU Ice Hockey Arena

MinStop/Rh

14,434 49,250 0 63,684

Adj Air Trans

Glass Solar Glass/Door Cond Wall Cond Partition/Door

Adjacent Floor Infiltration Sub Total ==>

Internal Loads

ENGINEERING CKS

16,750 0 -59,517 0

System Checksums By ACADEMIC

										_	_			_	_					-
Default)		Heating	70.0	67.9	6.79	19.0	0.0	0.0	0.0				Looting	Learning	1,510	1,510	1,510	0	4,324	
Bypass VAV with Reheat (30% Min Flow Default)	TEMPERATURES	Cooling		75.4		88.4	0.0	0.0	0.0			AIRFLOWS	pulloo	gillion a	5,032	5,032	5,032	0	4,324	
Reheat (3	里		SADB	Ra Plenum	Return	Ret/OA	Fn MtrTD	Fn BldTD	Fn Frict						Diffuser	Terminal	Main Fan	Sec Fan	Nom Vent	
VAV wit					Percent	Of Total	(%)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	_
Bypass	EAK	I Design			Coil Peak	Tot Sens	Btu/h		0	0	0	0	0	0	0	0	0	0	0	
	HEATING COIL PEAK	Mo/Hr: Heating Design	OADB: 11		Space Peak	Space Sens	Btu/h		0	0	0	0	0	0	0	0	0	0	0	
								Envelope Loads	Skylite Solar	Skylite Cond	Roof Cond	Glass Solar	Glass/Door Cond	Wall Cond	Partition/Door	Floor	Adjacent Floor	Infiltration	Sub Total ==>	
	PEAK	/15			Percent	Of Total	(%)		0	0	0	0	0	0	0	0	0	0	0	E
	CLG SPACE PEAK	Mo/Hr. 7 / 15	OADB: 9		Space		Btu/h		0	0	0	0	0	0	0	0	0	0	0	
	O	13 1	02		Percent	Of Total	%		0	0	0	0	0	0	0	0	0	0	0	2
		Mo/Hr: 7/14	91/74/1		Net	Total	Btu/h		0	0	0	0	0	0	0	0	0	0	0	
	OIL PEAK	Mo/Hr:	OADB/WB/HR: 91 / 74 / 102		Plenum	Sens. + Lat	Btu/h		0	0	0		0	0			0		0	
	COOLING COIL PEAK	Peaked at Time:	Outside Air:		Space	Sens. + Lat.	Btu/h		0	0	0	-		0	0	0	0	0	0	
		Peaked	Õ					e Loads	Solar	Cond	Sond	Solar	Door Cond	puo	n/Door		ent Floor	tion	ota/ ==>	

	7	ᄩ	33.4	0.0	19.0		0.0	0.0		
197	SELECTION	Coil Airflow cfm	1,510	0	5,032		0	0		
100.00 No. People	TING COIL	Capacity Coll Airflow Ent MBh cfm °F	-11.0	0:0	-245.7		0.0	0.0	-256.8	
	/HE/		Main Htg	Aux Htg	Preheat		Humidif	Opt Vent	Total	
-256,789		(%)					0	0	0	
		Glass ft²					0	0	0	
59,517	AREAS	Gross Total	6,171	0	0	0	0	0	0	
î		0.000		Part		ExFI	Roof	Wall	Ext Door	
100.00 Grand Total ==>		Leave DB/WB/HR °F °F gr/lb	81.5	0.0	0.0					
0 Gra		We DBA	61.8	0.0	0.0					
100.0		Lea	63.4	0.0	0.0					
64,517		IB/HR gr/lb	100.8	0.0	0.0					
	z	er DB/W	73.3	0.0	0.0					
100.00	ECTIO	F.	88.4	0.0	0.0					
207,758	COIL SEL	Coil Airflow cfm	5,032	0	0					
332	COOLING	Sens Cap. Coil Airflow Enter DB/WB/HR MBh cfm °F °F gr/lb	138.6	0.0	0.0					
103,917		Total Capacity ton MBh	207.8	0.0	0.0		207.8			
		Total ton	17.3	0.0	0.0		17.3			
Grand Total ==>			Main Clg	Aux Clg	Opt Vent		Total			

PSU ICE ARENA SPRING.TRC Project Name: Dataset Name:

Page | 148

babyak

sampson

schreffler

BIM Thesis Final Report

PSU Ice Hockey Arena

System Checksums By ACADEMIC

AHU-10										Bypass	VAV with	Bypass VAV with Reheat (30% Min Flow Default)	Min Flow D	efault)
	COOLINGC	OIL PEAK			CLG SPACE PEAK	E PEAK		I	HEATING COIL PEAK	IL PEAK		TEMP	TEMPERATURES	
Peake	Peaked at Time:	Mo	Mo/Hr: 7 / 15		Mo/H	Mo/Hr. 7 / 16			Mo/Hr. He.	Mo/Hr: Heating Design			Cooling	Heating
0	Outside Air:	OADB/WB/	OADB/WB/HR: 91 / 74 / 101	5	OADB: 91	3:91	- 8 -		OADB: 11			SADB	20.0	80.0
				B.B.								Ra Plenum	67.2	53.1
	Space	Plenum	Net Net	Percent	Space		-7-7	เก	Space Peak	Coil Peak	Percent	Return	67.2	53.1
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	of Total		ű	Space Sens	Tot Sens	Of Total	Ret/OA	2.89	53.1
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)			Btu/h	Btu/h	(%)	Fn MtrTD	0.0	0.0
Envelope Loads							Envelope Loads	ds				Fn BldTD	0.0	0.0
Skylite Solar	0	0	0	0	9	0	Skylite Solar		0	0	00:0	Fn Frict	0.0	0.0
Skylite Cond	0	0	0	0	0			P	0	0 !	0.0			
Root Cond	0	236,308	236,308	ω (-102,415	17.72		0.77	
Glass Solar	0 0		0 0	0 0	0				0 0	0 (0.00	AR	AIRFLOWS	
Glass/Door Cond	•					l		Cond		-	000		Cooling	Heating
Wall Cond	-	>	> C	⇒ c	ه د		Wall Cond		> C	-	00.0	Diffuser	83,419	25.026
Faltaonicool	0 0		0 0	 - c	. c			5	o c	0 0	000	Terminal	83 419	25.026
Adjacent Floor	0 0	c	9 0	5 6	ے ر	o		Jor	> C	0 0	9.0	Main Fan	83,419	25,026
Infiltration			o c	0 0	, c			5	o c	0 0	000	Coc Ean	-	_
Sub Total ==>	0 0	236 308	236 308	οœ	, ,		10 Te	A	0	-102.415	17.72	Nom Vant	5.364	· C
ano como	•	200,007	200,002	•	•							ALIII Vent	20,0	0 0
Internal Loade							Internal Loads					AHO VEDI	, c	-
		,		•									2000	900
Lights	141,746 2 400 000	00	141,746 2 400 000	 90 2	141,746	97	Lights		141,746	141,746	-24.53	MINSTOP/KN Refurn	83.419	83,419
Misc	0	0	0	0	0	-	Misc			0	0.00	Exhaust	5,364	0
Sub Total ==>	2.541.746	0	2.541.746	84	1.341.746	26	Sub Total ==>	\\	1.341.746	1.341.746	-232.18	Rm Exh	0	0
												Auxiliary	0	0
Ceiling Load	35.891	-35,891	0	0	36,013	3	Ceiling Load		-113,212	0	0.00	Leakage Dwn	0	0
Ventilation Load	0	0	252,253	80	9			ad	0	0	0.00	Leakage Ups	0	0
Adj Air Trans Heat	0		0	0	0	0 0		Heat	0	0	0)		
Dehumid. Ov Sizing			0	0	1		Ov/Undr Sizing		-1,779,651	-1,779,651	307.95			
Ov/Undr Sizing	0	3	0 000	0	0	0 (0 (0.00	ENGINE	ENGINEERING CKS	S
Exhaust Heat		-12,888	-12,888	-			OA Preheat Diff.	Ĕ!		> 0	0.00		Cooling	Heating
Sup. Fan Heat		C		5 C			RA Preheat DIII.	Ħ.		77 77	0.00	% OA		0.0
Duct Heat Dkin		o c	0 0			50	Additional Rel	IIcal		20.	5	cfm/ff*	1.61	1.61
Underfir Sup Ht Pkup	Q	o	0	0			Underfir Sup Ht Pkup	Ht Pkup		0	0.00	cfm/ton	331.75	
Supply Air Leakage	•	0	0	0			Supply Air Leakage	akage		0	00.0	ft²/ton	206.46	
								1			and the second s	Btu/hr-ft2	58.12	-15.92
Grand Total ==>	2,577,637	187,529	3,017,419	100.00	1,377,759	100.00	Grand Total ==>	î	-551,116	-577,896	100.00	No. People	6,000	
		000	100	I CI FO					0 4 1 0 4			O CIVILLY	NOITOL IL	
•	Total Capacity	Sens Cap.	COOLING COIL SELECTION Sens Cap. Coil Airflow Enter	Enter D	LION Enter DB/WB/HR	Leave	Leave DB/WB/HR	Gros	AREAS Gross Total	Slass	Ë	HEALING COIL SELECTION Capacity Coil Airflow	SELECTION Soil Airflow	Ent
	ton MBh	MBh		Ļ	F gr/lb	¥.	°F gr/lb			ff (%)		MBh		i L
90000							2 x x x x x x x x x x x x x x x x x x x							02 100428 100 3

2	3
5	Ξ
Ŋ	0
oj.	2
TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012	Alternative - 1 System Checksums Report Page 2 of 12
8	ä
_	Ф
0	±
Σ	8
α.	a
ø	œ
ç,	25
5	=
÷	S.
m	쏭
ĕ	ē.
Ħ	ठ
3	-
은	듄
g	ti
2	~
ø.	U)
ri	~
ø.	1
2	ø
8	≗
\sim	ā
(A)	=
ш	≝
Ò	⋖
≈	
F	

80.0 0.0 0.0 0.0

25,026 50.0 0 0.0 0 0.0 0 0.0 0 0.0

000

Floor Part Int Door ExFir Roof Wall

Leave DB/WB/HR °F °F gr/lb 50.0 49.8 53.7 0.0 0.0 0.0

Enter DB/WB/HR °F °F gr/lb 68.7 62.5 75.9 0.0 0.0 0.0

83,419 0 0

1,718.7 0.0 0.0

Main Clg Aux Clg Opt Vent

PSU ICE ARENA SPRING.TRC Project Name: Dataset Name:

Page | 149 schreffler sampson

babyak

Bypass VAV with Reheat (30% Min Flow Default)

TRACE® 700 v6.2.6.5 calculated at 01:36 PM on 04/19/2012 Alternative - 1 System Checksums Report Page 3 of 12

000

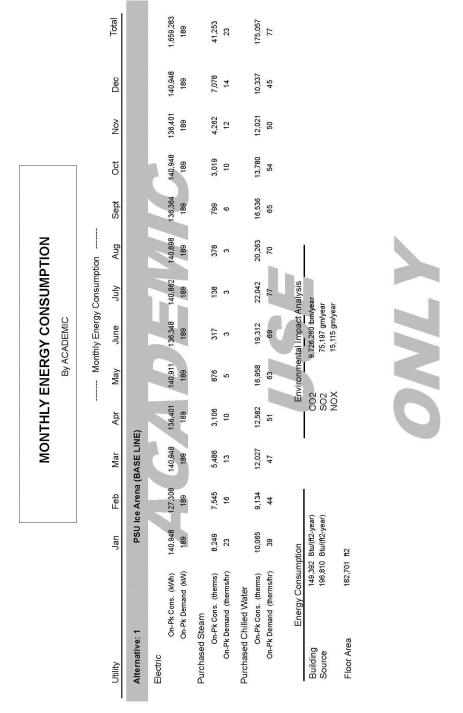
Floor Part Int Door ExFir Roof Wall

Main Clg Aux Clg Opt Vent Total

PSU Ice Hockey Arena

System Checksums
By ACADEMIC

AHU-12


	COOLING COIL PEAK	OIL PEAK			CLG SPACE PEAK	PEAK			HEATING COIL PEAK	OIL PEAK		TEME	TEMPERATURES	
Peak	Peaked at Time:	Mo	Mo/Hr. 7/15		Mo/Hr. 7 / 16	7 / 16			Mo/Hr. H	Mo/Hr. Heating Design			Cooling	Heating
	Outside Air:	OADBAWBA	OADBAWB/HR: 91 / 74 / 101	10	OADB: 91	. 16			OADB: 1	=		SADB	55.0	60.2
	VIII OUR AND A STATE OF THE STA				100000000000000000000000000000000000000							Ra Plenum	69.5	55.6
	Space	Plenum	Net	Percent	Space	Percent			Space Peak	Coil Peak		Return	69.5	55.6
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total			Space Sens	Tot Sens	ŏ	Ret/OA	(7.5	9. Fc
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)			Btu/h	Btu/h	(%)	Fn MtrTD	0.0	0.0
Envelope Loads							Envelope Loads	oads.				Fn BldTD	0.0	0.0
Skylite Solar	0	0	0	0	0	0	Skylite Solar	olar	0	0	0.00	Fn Frict	0.0	0.0
Skylite Cond	0	0	0	0	0	0	Skylite Cond	puo	0	0	0.00			
Roof Cond	0	144,651	144,651	54	0	0	Roof Cond	ld br	0	986'99-	L4		300	
Glass Solar	0		0	0	0	0	Glass Solar	lar		0	0.00	₹	AIRFLOWS	
Glass/Door Cond		0		0	0	0	Glass/D(Glass/Door Cond		0	0.00		Cooling	Heating
Wall Cond	20,983	18,420	39,402	φ.	25,78	12.	Wall Cond	ם נו	-15,450	//0'67-		Diffuser	28.520	8 556
Partition/Door	0 (o (0	0 (O (Partition/Door	Door	> (0 (0.00	Tomismo	28 520	0 556
Floor	0 0	C	0 0	 o .	0 (0 0	Floor	ī	0 (0 0	0.00	Main Fan	28,320	0,00
Adjacent Floor	0 0		> 0		> 0	· ·	Adjacent Floor	r Floor	> 0	0 0	0 0		070,07	,
Inflitration)		D	ò	o		Intilitration	c ·	0	0 00	100	Sec Fan)	0
Sub Total ==>	20,983	163,070	184,053	30	25,728	15	Sub Total ==>	<== /=	-15,450	-96,062	41.54	Nom Vent	4,007	2,352
				NA.R		an F						AHU Vent	4,007	2,352
Internal Loads						-	Internal Loads	ads				IIJul	0	0
Lights	85,487	1,050	86.537	14	85.487	39	Lights		85.487	86.537		MinStop/Rh	8,556	8,556
People	123,500	0	123,500	50	68,000	31	People		000'89	68,000	-29.40	Return	28,520	28,748
Misc	6,563	0	6,563	-	6,563	3	Misc	, m	6,563	6,563		Exhaust	4,007	2,579
Sub Total ==>	215.550	1.050	216 600	36	160 050	73	Sub Total ==>	/==/	160 050	161 100	-69 66	Rm Exh	0	0
												Auxiliary	0	0
Ceiling Load	34.363	-34.363	0	0	33.762		Ceiling Load	p	-42,955	0		Leakage Dwn	0	0
Ventilation Load	6	0	232.888	38	0	0	Ventilation Load	Load	0	-130,697	56.52	Leakage Ups	0	0
Adj Air Trans Heat	•		0	0	0	0	Adj Air Trans Heat	ns Heat	0	0	0			
Dehumid, Ov Sizing			0	9			Ov/Undr Sizing	zing	0	0	0.00			
OvillndrSizing			o C		_	- -	Exhaust Heat	, to		17 268		AI CIVIL	SAC DIVIDED OVE	•
Exhaust Heat	0	-26 920	-26 920	4	Ò		OA Preheat Diff	Diff		-80 214		200	EERINGCR	n
Sup. Fan Heaf		0	0	0		-0.	RA Preheat Diff	Diff		-102,655	a		Cooling	Heating
Ref. Fan Heat		0	0	0		4.0	Additional Reheat	Reheat		0		% oA	14.1	8.2
Duct Heat Pkup		0	0	0								cfm/ff²	1.09	1.09
Underfir Sup Ht Pkup	dh		0	0			Underfir S	Underfir Sup Ht Pkup		0		cfm/ton	564.18	
Supply Air Leakage	o.	0	0	0			Supply Air Leakage	Leakage		0	0.00	ft²/ton	517.79	
				**								Btu/hr·ff²	23.18	-8.72
Grand Total ==>	270,896	102,837	606,621	100.00	219,540	100.001	Grand Total ==>	<== }t	101,645	-231,261	100.00	No. People	270	
		COOLING	COOLING COIL SELECTION	ICTION					AREAS		=	HEATING COIL SELECTION	SELECTION	
	Total Capacity	Sens Cap.	Coil Airflow	Enter Di	Enter DB/WB/HR	Leave	Leave DB/WB/HR	o	Gross Total	Glass		Capacity	Capacity Coil Airflow MBh	Ent Lvg
			100000											
Main Clg 50 Aux Cla	50.6 606.6 0.0 0.0	440.2	28,520 0	0.0 0.0	0.0	55.0 54.5 0.0 0.0	54.5 63.5 0.0 0.0	Floor	26,175 0		Main Htg Aux Htg	-49.2 0.0	8,556 5	55.0 60.2 0.0 0.0
								1						100
obt vent))	2				0.0	ExFIr	o c		Freneat	7.671-	4 026,92	49.5 55.0

PSU ICE ARENA
ject Name:

SPRING.TRC Project Name: Dataset Name:

Page | 150 schreffler babyak sampson

Appendix K. Façade Life-Cycle Cost Analysis Energy Consumption Reports Baseline Brick

TRACE® 700 v6.2.6.5 calculated at 12:24 PM on 03/19/2012 Alternative - 1 Monthly Energy Consumption report Page 1 of 1

Project Name: PSU ICE ARENA Dataset Name: Spring.trc

Page | 151

babyak | sampson | schreffler

Baseline Metal Panels

Total

Dec

Š

Öct

Aug

July

May

Apr

Mar

Feb

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

------ Monthly Energy Consumption ------

Alternative: 1		PSU	ce Arena (PSU Ice Arena (BASE LINE)	0									
Electric On-Pk Cons.	On-Pk Cons. (kWh)	140,948	127,308	140,948	136,402	140,911	136,348	140,863	140,898	136,364	140,948	136,402	140,948	1,659,288
Purchased Steam On-Pk Cons. (On-Pk Demand (th	ased Steam On-Pk Cons. (therms) On-Pk Demand (thermshr)	8,280	7,599	5,492	3,110	883 4	332	3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	395	804	3,025	4,268	7,116	41,457
Purchased Chilled Water On-Pk Cons. (ther On-Pk Demand (therm	ased Chilled Water On-Pk Cons. (therms) On-Pk Demand (therms/hr)	10,072 39	9,096	11,981 48	12,562	16,983	19,355	22,077	20,305	16,573 66	13,748	11,976	10,290	175,018 77
Ë	Energy Consumption	tion		ı	ش 	Environmental Impact Analysis	al Impact /	Analysis						
Building Source	149,483 196,943	149,483 Btu/(ft2-year) 196,943 Btu/(ft2-year)	<u>ខ</u> ខ		002 802 NOX		9,732,128 lbm/year 75,243 gm/year 15,124 gm/year	íyear ear ear						
Floor Area	182,701 ft2	42												

TRACE® 700 v6.2.6.5 calculated at 12:34 PM on 03/19/2012 Alternative - 1 Monthly Energy Consumption report Page 1 of 1

A TWO

Project Name: Dataset Name:

PSU ICE ARENA Spring.trc

Page | 152

babyak schreffler sampson

Total

Dec

Š

Öct

Aug

July

May

Apr

Mar

Feb

PSU Ice Hockey Arena

50% Glass

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

------ Monthly Energy Consumption ------

				10.10										
Alternative: 1		Psu	ce Arena	PSU Ice Arena (BASE LINE)	n n									
Electric				1							7			
-lo	On-Pk Cons. (kWh)	140,946	127,306	140,946	136,399	140,909	136,347	140,865	140,897	136,362	140,946	136,399	140,946	1,659,267
<u>e</u>	On-Pk Demand (kW)	189	189	189	189	189	189	189	189	189	189	189	189	189
Purchased Steam	am													
On-Pk	On-Pk Cons. (therms)	8,069	7,422	5,478	3,137	929	377	194	444	843	3,032	4,257	7,024	41,207
On-Pk Den	On-Pk Demand (therms/hr)	23	17	4	10	9	4	4	2	9	F	13	15	23
Purchased Chilled Wate	lled Water													
On-Pk	On-Pk Cons. (therms)	10,352	9,393	12,305	12,782	16,976	19,171	21,804	20,182	16,621	13,923	12,186	10,575	176,271
On-Pk Den	On-Pk Demand (therms/hr)	40	48	20	25	61	99	74	69	99	22	54	49	74
3	Energy Consumption	ption		•	Ш	Environmental Impact Analysis	tal Impact	Analysis						
Building Source	150,031 197,287	150,031 Btu/(ft2-year) 197,287 Btu/(ft2-year)	(a	•	CO2 SO2 NOX		9,767,852 lbm/year 75,519 gm/year 15,179 gm/year	ıfyear rear rear	ř					
Floor Area	182,701 ft2	22												

TRACE® 700 v6.2.6.5 calculated at 12:08 PM on 03/29/2012 Alternative - 1 Monthly Energy Consumption report Page 1 of 1

PSU ICE ARENA SPRING.TRC

Project Name: Dataset Name:

Page | 153

A TWO

Total

Dec

Š

Öct

Sept

Aug

July

May

Apr

Mar

Feb

PSU Ice Hockey Arena

60% Glass

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

------ Monthly Energy Consumption ------

	1,659,268	41,781	176,667
	140,946	7,097	10,614 49
	136,399	4,314	12,211 54
	140,946	3,086	13.950 57
	136,363	875	16,646 67
	140,897	479	20,206
	140,865	223	21,833 74 74 Analysis aar
	136,347	409	19,208 21 67 ntal Impact Anal 9,802,435 lbm/year 75,786 gm/year 15,233 gm/year
	140,909	963	17,018 61 vironme
(1	136,399	3,173	12,814 52 CO2 SO2 NOX
PSU Ice Arena (BASE LINE)	140,946	5,531 15	50
e Arena (I	127,306	7,485	9,431
PSU k	140,946	8,147	ms) 10,398 1s/hr) 40 DnSumption 150,562 Bu/(ft2-year) 197,873 Bu/(ft2-year)
	On-Pk Cons. (kWh) On-Pk Demand (kW)	ased Steam On-Pk Cons. (therms) On-Pk Demand (therms/hr)	
Alternative: 1	Electric On-	Purchased Steam On-Pk Con	Purchased Chilled Wate On-Pk Cons. (the On-Pk Demand (therr Energy C Building Source Floor Area

TRACE® 700 v6.2.6.5 calculated at 12:00 PM on 03/29/2012 Alternative - 1 Monthly Energy Consumption report Page 1 of 1

Project Name: Dataset Name:

Page | 154

babyak sampson schreffler

OWL Y

70% Glass

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

------ Monthly Energy Consumption ------

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 1		PSU	ce Arena	PSU Ice Arena (BASE LINE)	<u>(i</u>									
Electric				3	1						7			
Id-nO	On-Pk Cons. (kWh)	140,946	127,306	140,946	136,399	140,909	136,347	140,865	140,897	136,363	140,946	136,399	140,946	1,659,269
AP	On-Pk Demand (kW)	189	189	189	189	189	189	189	189	189	189	189	189	189
Purchased Steam	Ε													
On-Pk C	On-Pk Cons. (therms)	8,226	7,556	5,588	3,207	994	438	247	511	910	3,132	4,382	7,166	42,356
On-Pk Dema	On-Pk Demand (therms/hr)	24	18	15	F	9	2	2	S	2	12	14	16	24
Purchased Chilled Wate	ed Water													
On-Pk C	On-Pk Cons. (therms)	10,441	9,475	12,381	12,852	17,065	19,252	21,868	20,240	16,685	13,977	12,251	10,651	177,139
On-Pk Dema	On-Pk Demand (therms/hr)	40	20	20	25	P9 04	67	74	89	29	28	55	20	74
Ē	Energy Consumption	otion			\ 	Environmental Impact Analysis	tal Impact /	Analysis						
Building Source	151,135 198,491	151,135 Btu/(ft2-year) 198,491 Btu/(ft2-year)	(<u>.</u> (<u>.</u>		CO2 SO2 NOX		9,839,727 lbm/year 76,075 gm/year 15,291 gm/year	fyear ear ear						
Floor Area	182,701 ft2	42												

TRACE® 700 v6.2.6.5 calculated at 11:52 AM on 03/29/2012 Alternative - 1 Monthly Energy Consumption report Page 1 of 1

Project Name: Dataset Name:

PSU ICE ARENA SPRING.TRC

Page | 155

babyak sampson schreffler

A TWO

80% Glass

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

------ Monthly Energy Consumption ------

Utility		Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 1		PSU	ce Arena (PSU Ice Arena (BASE LINE)	(1)									
Electric			5	1							7			
On-Pk C		140,946	127,306	140,946	136,399	140,910	136,347	140,865	140,897	136,363	140,946	136,399	140,946	1,659,271
On-Pk Demand	emand (kW)	189	189	189	189	189	189	189	189	189	189	189	189	189
Purchased Steam														
On-Pk Con	On-Pk Cons. (therms)	8,292	7,620	5,651	3,249	1,022	465	271	541	947	3,195	4,446	7,224	42,923
On-Pk Demand (therms/hr)	(therms/hr)	25	18	15	12	9	2	Ŋ	9	89	12	4	17	25
Purchased Chilled Water	Water													
On-Pk Con	On-Pk Cons. (therms)	10,480	9,517	12,430	12,901	17,117	19,301	21,911	20,282	16,734	14,026	12,292	10,685	177,675
On-Pk Demand (therms/hr)	l (therms/hr)	40	20	51	25	61	29	75	89	29	28	56	51	75
Enei	Energy Consumption	otion		,		Environmental Impact Analysis	tal Impact /	Analysis						
Building Source	151,739 199,130	151,739 Btu/(ft2-year) 199,130 Btu/(ft2-year)	(<u>)</u>	-	002 802 NOX		9,879,037 lbm/year 76,379 gm/year 15,352 gm/year	lyear ear ear						
Floor Area	182,701 ft2	12												

TRACE® 700 v6.2.6.5 calculated at 11:44 AM on 03/29/2012 Alternative - 1 Monthly Energy Consumption report Page 1 of 1

PSU ICE ARENA SPRING.TRC

Project Name: Dataset Name:

Page | 156

babyak sampson schreffler

OWL Y

90% Glass

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

------ Monthly Energy Consumption

1,659,275 Total 25 22 10,726 52 7,288 Dec 136,400 1,508 Nov 189 99 14,086 59 3,262 Oct 16,791 Sept 89 Aug 89 21,968 July 293 22 76,712 gm/year 15,419 gm/year June 17,178 May 1,047 Envir S02 NOX 12,959 3,294 Apr 53 PSU Ice Arena (BASE LINE) 12,492 Mar 16 51 9,563 51 Feb 7,684 152,401 Btu/(ft2-year) 199,812 Btu/(ft2-year) 8,358 10,524 Jan 4 **Energy Consumption** 182,701 ft2 On-Pk Demand (kW) On-Pk Cons. (therms) On-Pk Demand (therms/hr) On-Pk Demand (therms/hr) On-Pk Cons. (kWh) On-Pk Cons. (therms) Purchased Chilled Water Purchased Steam Alternative: 1 Floor Area Building Source Electric Utility

TRACE® 700 v6.2.6.5 calculated at 11:29 AM on 03/29/2012 Alternative - 1 Monthly Energy Consumption report Page 1 of 1

PSU ICE ARENA SPRING.TRC

Project Name: Dataset Name:

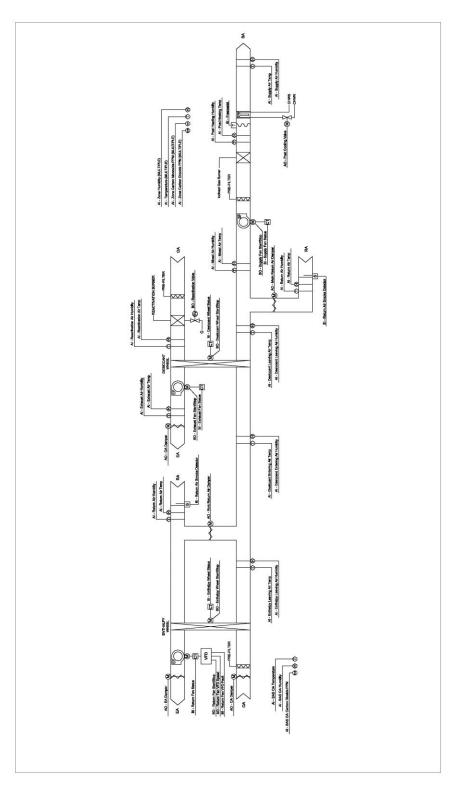
Page | 157

babyak sampson schreffler

Appendix L. Life-Cycle Cost Analysis Spreadsheet Example

70% Glass

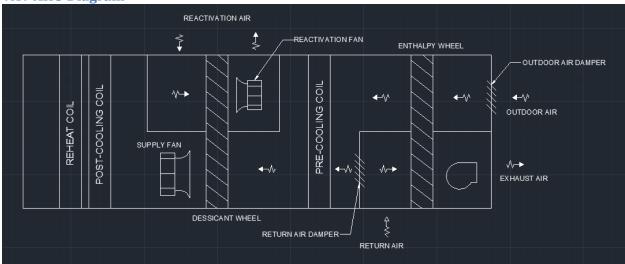
Alternative	1: Purchased D	istrict Stea	ım and	d Chilled W	ater							
	ELEC.	TRIC		S7	EAM	CHILLE	D WATER					
Ann. Use	1,659,269	kWh		42,356	therms	177,139.00	therms					
Unit Cost	\$ 0.08	\$/kWh	9	1.14	\$/therm	\$ 1.40	\$/therm					
Ann. Cost	\$ 132,742		0,7	48,286		\$ 247,995						
	Discount Rate	2.30		%	(OMB 30 Year)							
					Elect.	Nat. Gas					Chil	led Water
Date	Year	Capita	(Other Mat.	Escalation	Escalation	Elect. C	ost	Stea	m Cost		Cost
2011	1	\$. 9	3,000	1.00	1.00	\$ 13	2,742	\$	48,286	\$	247,995
2012	2	Υ	. (3,000	0.96	0.98	\$ 12	7,432	\$	47,320	\$	238,075
2013	3	Υ	. (0.93	0.95		3,450	\$	45,872	\$	230,635
2014	4	\$. (3,000	0.91	0.91	\$ 12	0,795	\$	43,940	\$	225,675
2015	5	\$. 9	3,000	0.91	0.90	\$ 12	0,795	\$	43,457	\$	225,675
2016	6	т	. 9	3,000	0.90	0.90	\$ 11	9,467	\$	43,457	\$	223,195
2017	7	Υ	. 9	3,000	0.90	0.91	\$ 11	9,467	\$	43,940	\$	223,195
2018	8	\$. 9	3,000	0.91	0.92	\$ 12	0,795	\$	44,423	\$	225,675
2019	9	\$. 9	3,000	0.93	0.93	\$ 12	3,450	\$	44,906	\$	230,635
2020	10	\$. 9	3,000	0.94	0.94	\$ 12	4,777	\$	45,389	\$	233,115
2021	11	\$. (3,000	0.94	0.95	\$ 12	4,777	\$	45,872	\$	233,115
2022	12	\$. (3,000	0.94	0.97	\$ 12	4,777	\$	46,837	\$	233,115
2023	13	\$. (3,000	0.94	0.98	\$ 12	4,777	\$	47,320	\$	233,115
2024	14	\$. (3,000	0.94	0.99	\$ 12	4,777	\$	47,803	\$	233,115
2025	15	\$. (3,000	0.94	1.00	\$ 12	4,777	\$	48,286	\$	233,115
2026	16	\$. (3,000	0.94	1.01	\$ 12	4,777	\$	48,769	\$	233,115
2027	17	\$. (3,000	0.94	1.02	\$ 12	4,777	\$	49,252	\$	233,115
2028	18	\$. (3,000	0.94	1.03	\$ 12	4,777	\$	49,734	\$	233,115
2029	19	\$. (3,000	0.93	1.04	\$ 12	3,450	\$	50,217	\$	230,635
2030	20	\$. (3,000	0.93	1.05	\$ 12	3,450	\$	50,700	\$	230,635
2031	21	\$. (3,000	0.93	1.06	\$ 12	3,450	\$	51,183	\$	230,635
2032	22	\$. (3,000	0.94	1.07	\$ 12	4,777	\$	51,666	\$	233,115
2033	23	\$. (3,000	0.94	1.08	\$ 12	4,777	\$	52,149	\$	233,115
2034	24	\$. (3,000	0.95	1.09	\$ 12	6,104	\$	52,632	\$	235,595
2035	25	\$. (3,000	0.95	1.09	\$ 12	6,104	\$	52,632	\$	235,595
2036	26	\$. (3,000	0.95	1.11	\$ 12	6,104	\$	53,597	\$	235,595
2037	27	\$. (3,000	0.95	1.12	\$ 12	6,104	\$	54,080	\$	235,595
2038	28	\$. (3,000	0.94	1.14	\$ 12	4,777	\$	55,046	\$	233,115
2039	29	\$. (3,000	0.94	1.15	\$ 12	4,777	\$	55,529	\$	233,115
2040	30	\$. (3,000	0.93	1.17	\$ 12	3,450	\$	56,494	\$	230,635
	Column NPV	\$		64,499			\$ 2,67	0,749	\$ 1,	039,815	\$	4,989,633
		Total NPV									\$	8,764,696

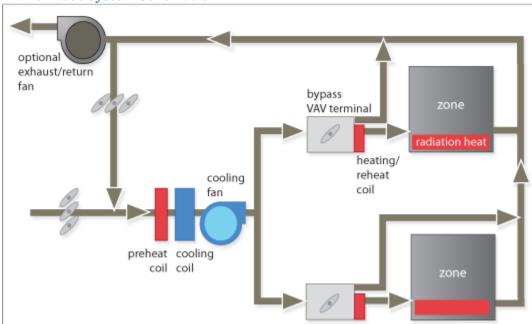

Appendix M. AHU Room CFM Table Example

AHU-9 CFM Calculations

		CFM
136	LOCKER ROOM	1000
134A	RESTROOM	0
134	LOCKER ROOM	1000
135A	RESTROOM	0
Q108	CORRIDOR	100
137	LOCKER ROOM	1000
134B	SHOWER	150
135	LOCKER ROOM	1000
135B	SHOWER	150
140	LOCKER ROOM	1000
138B	SHOWER	200
138A	RESTROOM	0
138	LOCKER ROOM	1000
Q109	CORRIDOR	75
141	LOCKER ROOM	1000
139B	SHOWER	200
139A	RESTROOM	0
139	LOCKER ROOM	800
144	OFFICIAL LOCKER ROOM	200
142A	BATHROOM	0
142	OFFICIAL LOCKER ROOM	200
J142	JAN	75
Q110	CORRIDOR	75
143A	BATHROOM	0
145	OFFICIAL LOCKER ROOM	200
143	OFFICIAL LOCKER ROOM	200
147A	STORAGE	75
		9700

Appendix N. Mechanical System Schematic


Dehumidification Unit Control Diagram


Page | 160

babyak | sampson | schreffler

VAV AHU Diagram

Trane Trace System Schematic

Appendix O. Mechanical References

ARUP. (2011). The Olympic ice hockey stadium, Turin, Italy. Retrieved September 6, 2011, from arup.com: http://www.arup.com/_assets/_download/download532.pdf

Document: Discusses the structural design, mechanical services, electrical services, and acoustics of the Olympic ice hockey stadium in Turin, Italy.

Event Deck. (2011). Ice Arena Flooring. Retrieved September 1, 2011, from EventDeck: http://www.eventdeck.com/EventDeck%20Ice.shtml

Website: Event Deck can convert an ice arena into a multipurpose floor quickly and economically.

Ice Kube Heat. (2011). Ice Kube Systems. Retrieved September 4, 2011, from geo-energie.com: http://geo-energie.com/images/iksbrochure.pdf

Website: This page discusses the concepts of a geothermal ice arena.

International Ice Hockey Federation. (2011). Technical guidelines of an ice rink. Retrieved September 1, 2011, from iihf.com:

http://www.iihf.com/fileadmin/user_upload/PDF/Sport/Chapter3.pdf

Document: This document contains the technical guidelines of an ice rink according to the International Ice Hockey Federation.

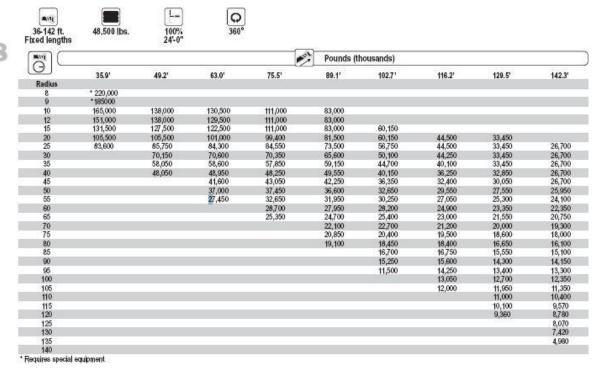
Sporttester. (2011). How Ice Hockey Rinks are Made - Video. Retrieved September 5, 2011, from Sportester.com:

http://www.sporttester.com/how-ice-hockey-rinks-are-made-video/

Website: This is a good video to learn the basics of how ice hockey rinks are made.

Target Center. (2011). Target Center Acoustic Upgrade. Retrieved September 6, 2011, from Target Center: Minneapolis Minnesota:

http://www.targetcenter.com/default.asp?targetcenter=168


Website: This page shows how the Target Center improved its arena acoustics.

University of Salford. (2011). Concert Hall Acoustics: Art and Science. Retrieved September 6, 2011, from http://www.acoustics.salford.ac.uk/acoustics_info/concert_hall_acoustics/ **Website:** This site explains the basics of concert hall acoustics.

Ι

Construction Appendix

Appendix P. Crane Load Charts

360° L_ MATE. 36-142 ft. 100% 44,000 lbs. Fixed lengths (H) Pounds (thousands) 142.3 89.1 102.7 116.2 129.5 35.9 49.2 63.0 75.5 165,000 151,000 138,000 138,000 127,500 105,500 130,500 129,500 83,000 83,000 83,000 81,500 73,500 65,600 57,050 47,700 111,000 111,000 111,000 99,400 84,550 68,200 55,700 47,450 41,500 35,550 131,500 105,500 82,900 60,150 60,150 56,750 50,100 122,500 44,500 44,500 44,250 101,000 26,700 26,700 26,700 26,700 84,900 68,050 33,450 33,450 83,600 68,650 56,000 46,500 56,450 47,100 44,700 40,150 40,100 36,250 33,450 32,850 32,400 29,550 27,050 24,900 22,350 20,700 40,300 35,600 27,450 36,350 32,650 30,250 27,000 30,050 27,550 25,300 23,350 40,650 34,700 26,700 25,950 30,800 27,000 23,850 30,050 26,250 23,550 22,050 24,100 22,350 60 65 70 75 23,850 21,300 21,550 20,000 20,750 19,300 19,100 17,250 15,650 14,250 11,500 20,700 19,400 17,500 15,960 14,550 13,250 12,150 11,100 18,000 16,100 15,100 13,800 12,550 11,450 19,800 18,050 16,150 15,050 14,200 90 95 13,150 12,050 100 10,450 9,570 105 11,050 10,150 110 9,330 8,590 8,760 8,010 120 7,330 6,720 130

TMS 900E Load Chart (source: bigge.com)

Page | 163

babyak | sampson | schreffler

			Power	Pinned Fly Ret	racted			Power P Fly Ext & 85 ft
(Feet)	35	40	45	55	65	75	85	110
10	120,000 (65)	90,000 (68)	82,000 (71)	80,250 (75)				
12	99,000 (61)	90,000 (65)	82,000 (68)	75,000 (73)	67,000 (76)			
15	83,500 (55.5)	83,500 (60)	82,000 (64)	68,000 (69.5)	59,000 (73)			
20	64,350 (44.5)	64,350 (51)	64,300 (56.5)	55,750 (63.5)	49,000 (68.5)	43,000 (72)	39,350 (74.5)	
25	49,450 (31)	49,450 (41)	49,450 (48.5)	47,900 (57.5)	40,400 (63.5)	35,550 (68)	33,000 (71)	27,100 (76)
30		39,600 (28)	39,600 (39)	39,600 (51)	34,350 (58.5)	31,000 (63.5)	27,800 (67.5)	23,450 (74)
35			32,400 (26.5)	32,400 (44)	29,750 (53)	26,550 (59)	23,900 (63.5)	20,600 (71)
40				24,248 (35.5)	24,280 (47)	23,200 (54.5)	20,850 (60)	18,350 (68)
45				19,250 (24.5)	19,250 (40.5)	19,250 (49.5)	18,300 (55.5)	16,45 (65)
50					15,830 (32.5)	15,830 (44)	15,830 (51.5)	14,75 (62)
55					13,330 (22.5)	13,330 (38)	13,330 (46.5)	13,25 (59)
60						11,450 (31)	11,450 (41.5)	11,95 (56)
65						9,760 (21.5)	9,760 (36)	10,80 (52.5)
70							8,150 (29.5)	9,730 (49)
75							6,620 (20.5)	8,450 (45.5)
80								7,460 (41.5)
85								6,530 (37)
90								5,620 (32)
95								4,750 (26.5)
100								3,940 (18.5)
Minimum	boom angle (de	eg.) for indicate	d length (no loa	ad)			0	0
Maximum	boom length (1	ft.) at 0 deg. boo	om angle (no lo	ad)			85	110

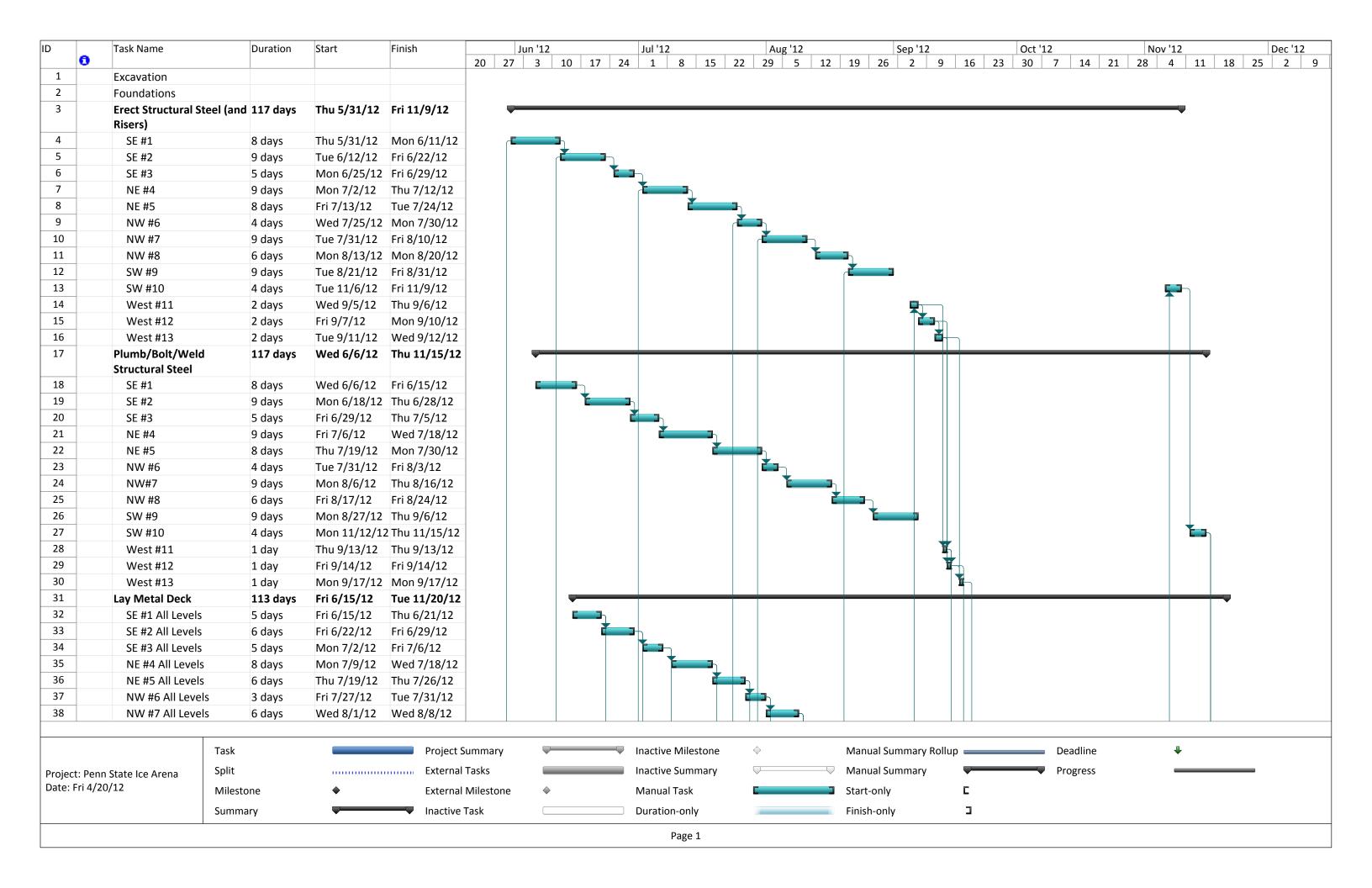
RT 760 Load Chart (source: bigge.com)

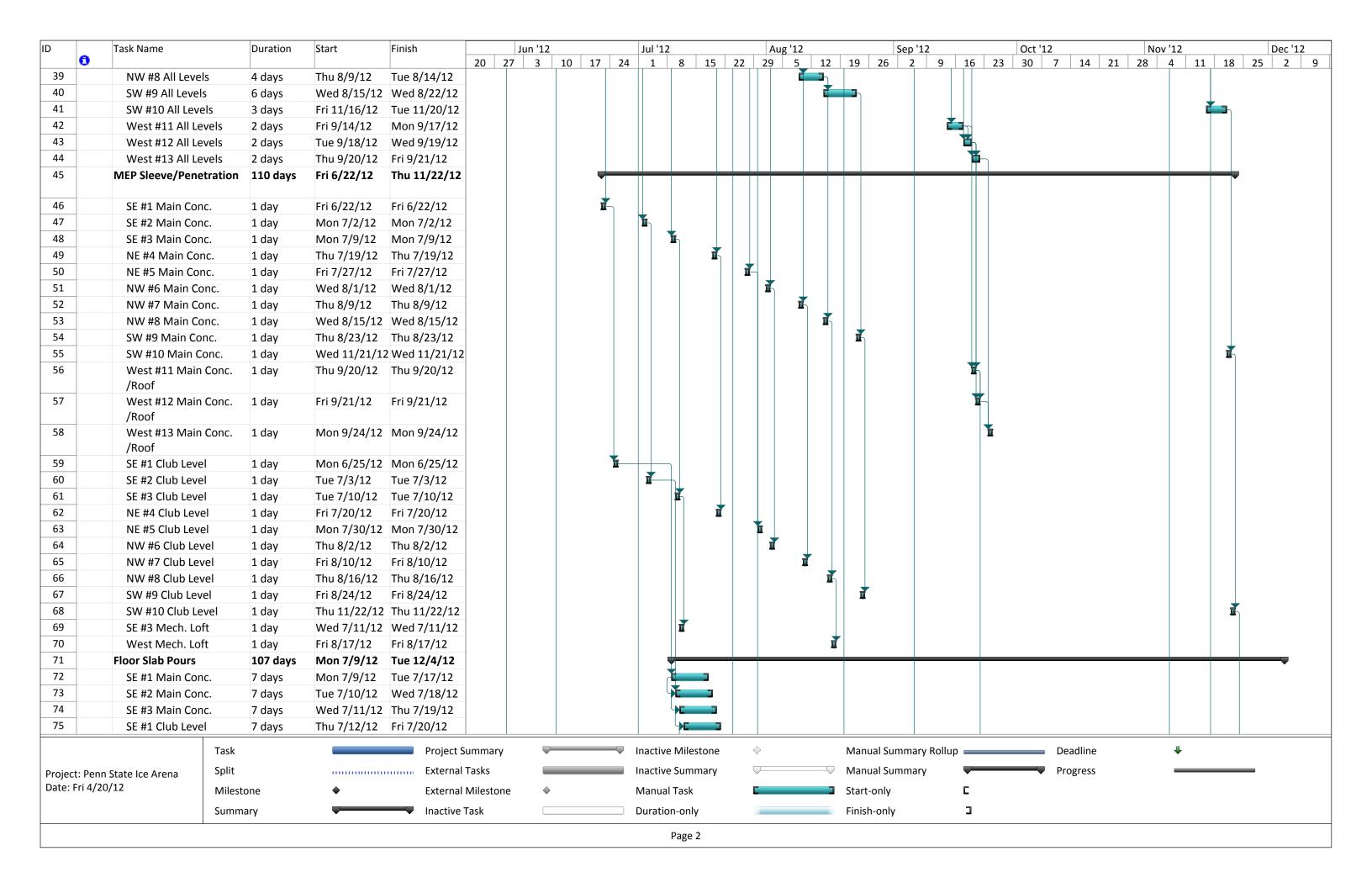
Appendix Q. Existing and Redesigned Ductwork Lengths, Pressure Drops, and Costs

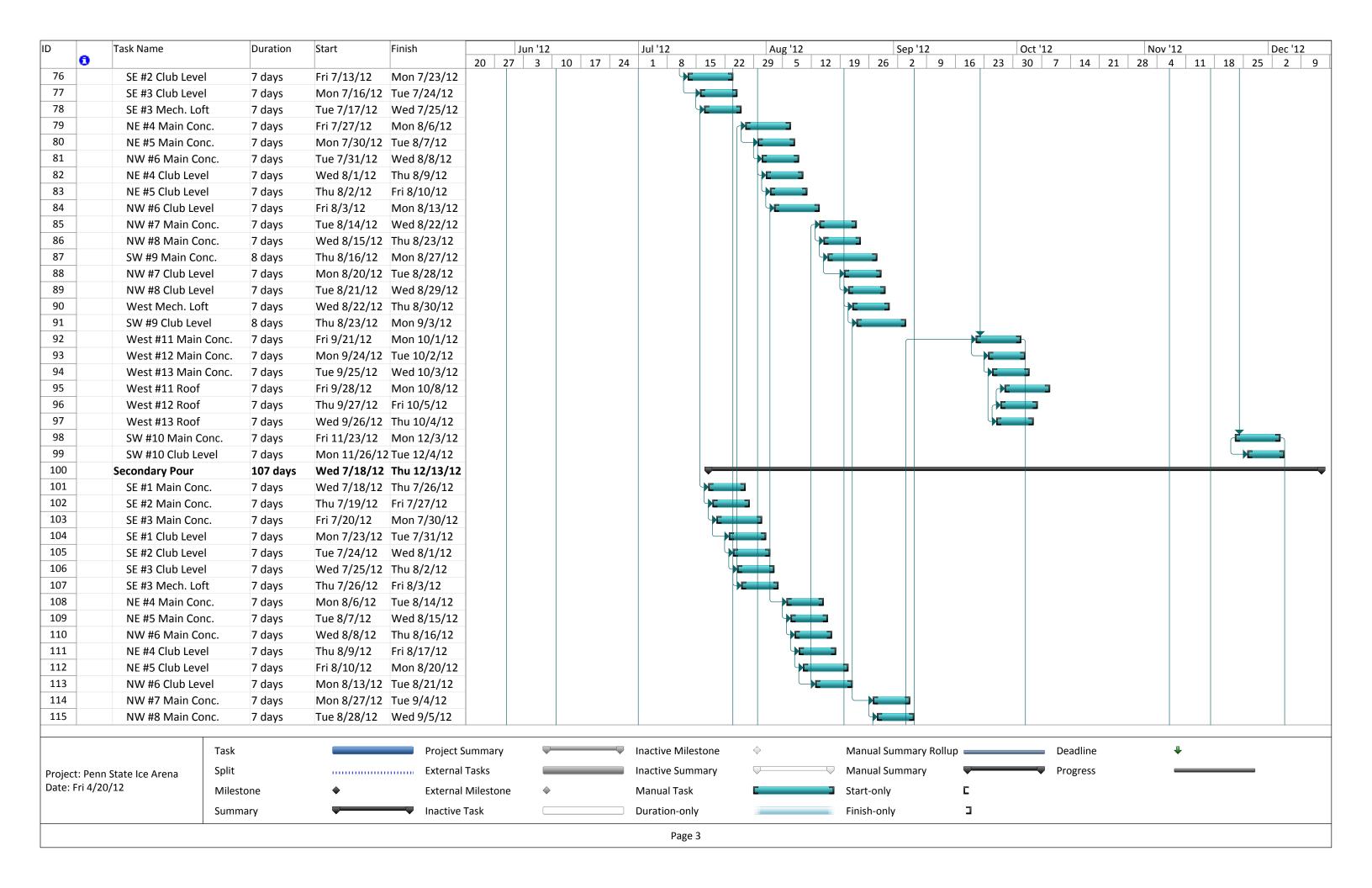
						Existing	g Retui	rn Ductw	ork (
	Duct Size	Length	# Elbows	P Drop	SF	Diameter	Gauge	Unit Weight (lbs/ft)	Elbow Weight (lbs)	Total Weight (lbs)	Unit Cost (\$/lb)	Elbow Cost	Total Cost
AHU-1	32x20	27.467	6	0.024	269.34	27.5	24	11.2	34.5	514.63	\$ 7.85	\$ 240.00	\$ 3,854.90
	26x26	2	2	0.0014	16.44	28.4	24	11.2	28.7	79.80	\$ 8.20	\$ 218.65	\$ 620.98
	24x24	310.7	3	0.3434	2482.62	26.2	24	10.3	24.2	3272.81	\$ 7.05	\$ 169.50	\$ 23,069.98
AHU-2	48x20	12.9	2	0.005	145.57	33.1	22	17	64.7	348.70	\$ 7.85	\$ 320.00	\$ 2,361.51
	30x30	345.86	7	0.319	3464.2	32.8	22	15	37.9	5453.20	\$ 6.85	\$ 311.07	\$ 37,714.61
AHU-6	42x42	6	1	0.0033	70.4	45.9	22	21	80.9	206.90	\$ 8.20	\$ 593.70	\$ 1,626.90
	50x36	306.75	7	0.216	4395.13	46.2	22	21.5	88.4	7213.93	\$ 6.85	\$ 625.00	\$ 49,551.61
2014	72.40	706.25			40640.00	50.0	20	22.5	475	26052.42	d 6 05	d 4 200 00	Å 405 420 04
BOWL	72x40	786.25	8		13649.08	58.0	20	32.5	175	26953.13	\$ 6.85	\$ 1,300.00	\$ 185,438.91
											Return Total Cost:		\$ 364,736.55

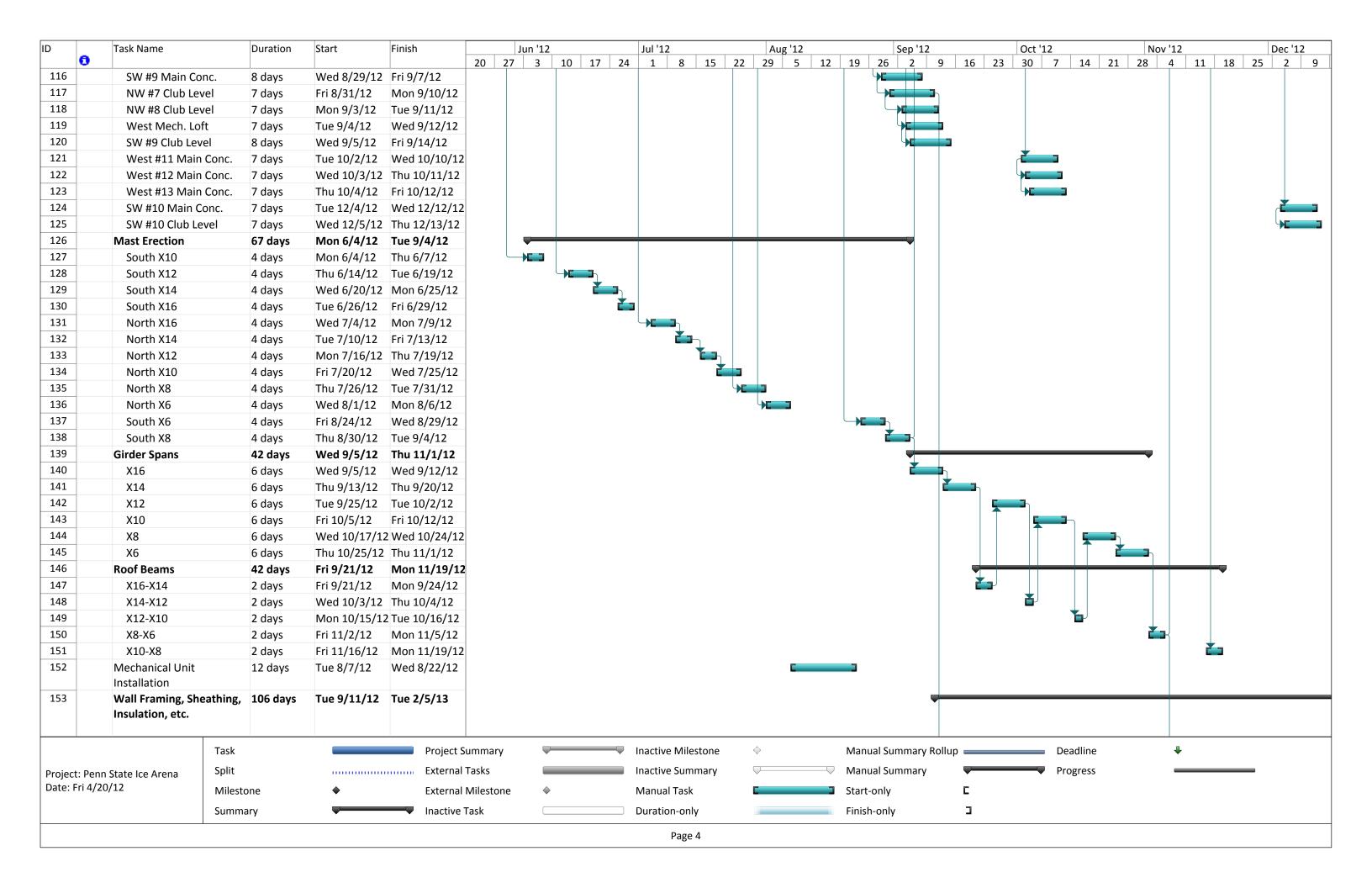
Existing Supply Ductwork SF **Elbow Unit Cost Elbow Cost Total Cost** Length Ρ Gauge **Duct** Diameter Unit Total Weight Weight Weight (\$/lb) Size **Elbows** Drop (no.) (lbs/ft) (lbs) (lbs) 32x20 41.108 0.072 395.88 27.5 11.2 34.5 598.41 \$ 7.85 \$ 240.00 \$ 4,574.22 AHU-1 4 24 26x26 294.25 0.219 2520.54 3353.00 7.05 218.65 2 \$ \$ \$ 23,671.28 28.4 24 11.2 28.7 AHU-2 34x20 12.56 0.029 130.96 221.70 \$ \$ 278.00 \$ 2 28.3 24 11.6 38 8.20 1,750.71 34x34 334.55 0.1968 3757.84 37.2 22 6231.85 \$ 6.85 \$ 433.62 \$ 42,860.93 9 17.0 60.5 AHU-6 66x32 355.75 8 0.1617 5771.21 49.4 22 24.5 144 9867.88 \$ 6.85 \$ 1,000.00 \$ 67,703.74 \$ \$ \$ AHU-7 38x32 0.1081 2292.54 60.8 4187.73 440.30 29,628.40 208.03 9 38.1 22 17.5 7.05 **BOWL** 70 102.8 3 1888.9 70 20 34.1 500 5005.48 \$ 100.00 \$ 1,000.00 \$ 353,548.00 2084 68 3872.70 68 117 20 33.1 \$ 95.75 \$ 1,000.00 \$ 370,811.03 94.3 3062 62 2847.86 \$ 93.50 \$ 1,000.00 266,274.91 62 20 30.2 48 188.6 1448 48 22 19.9 3753.14 \$ 72.00 \$ 850.00 270,226.08 \$ 1,488,728.41 **Supply Cost:**

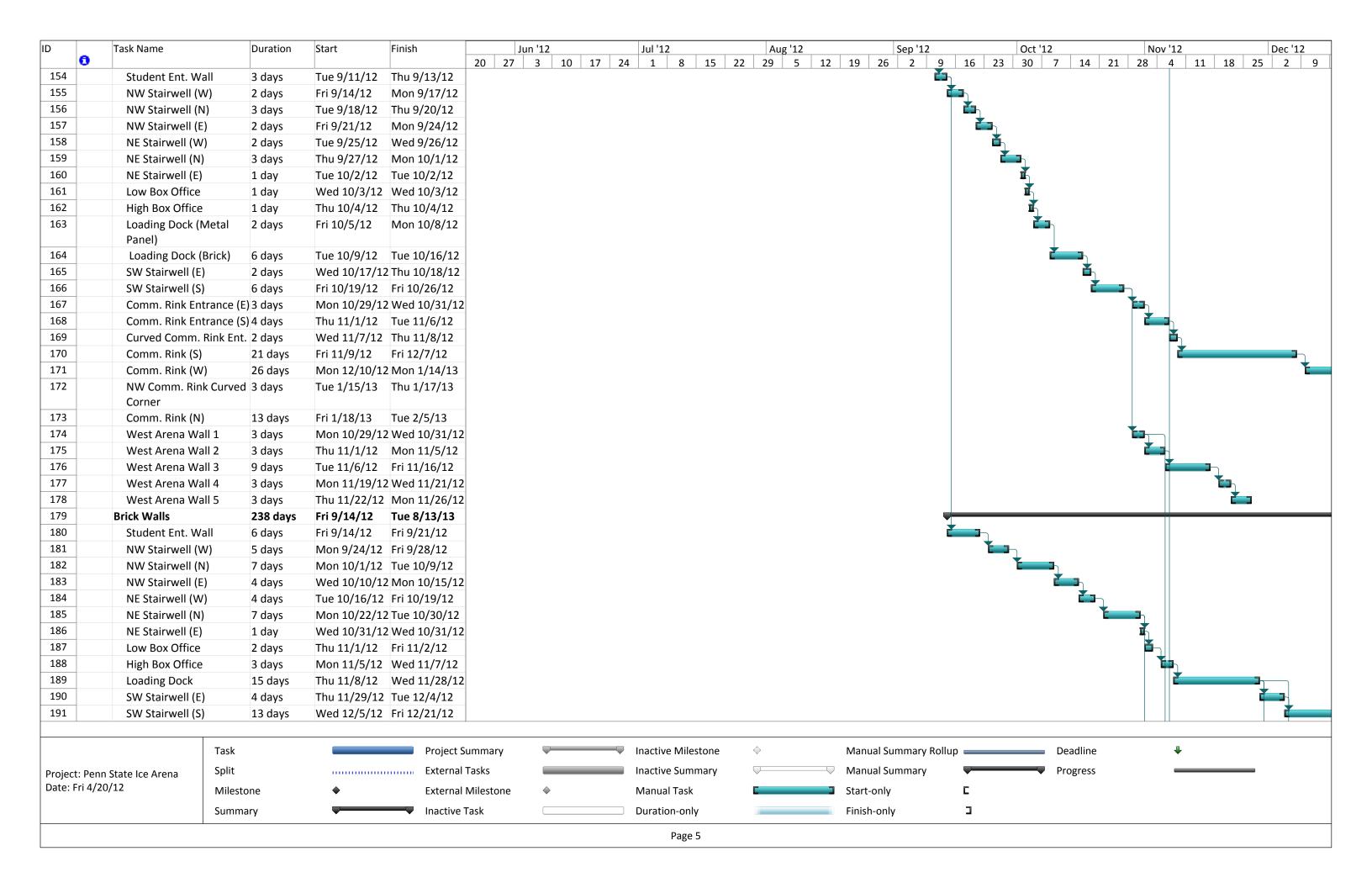
BIM Thesis Final Report

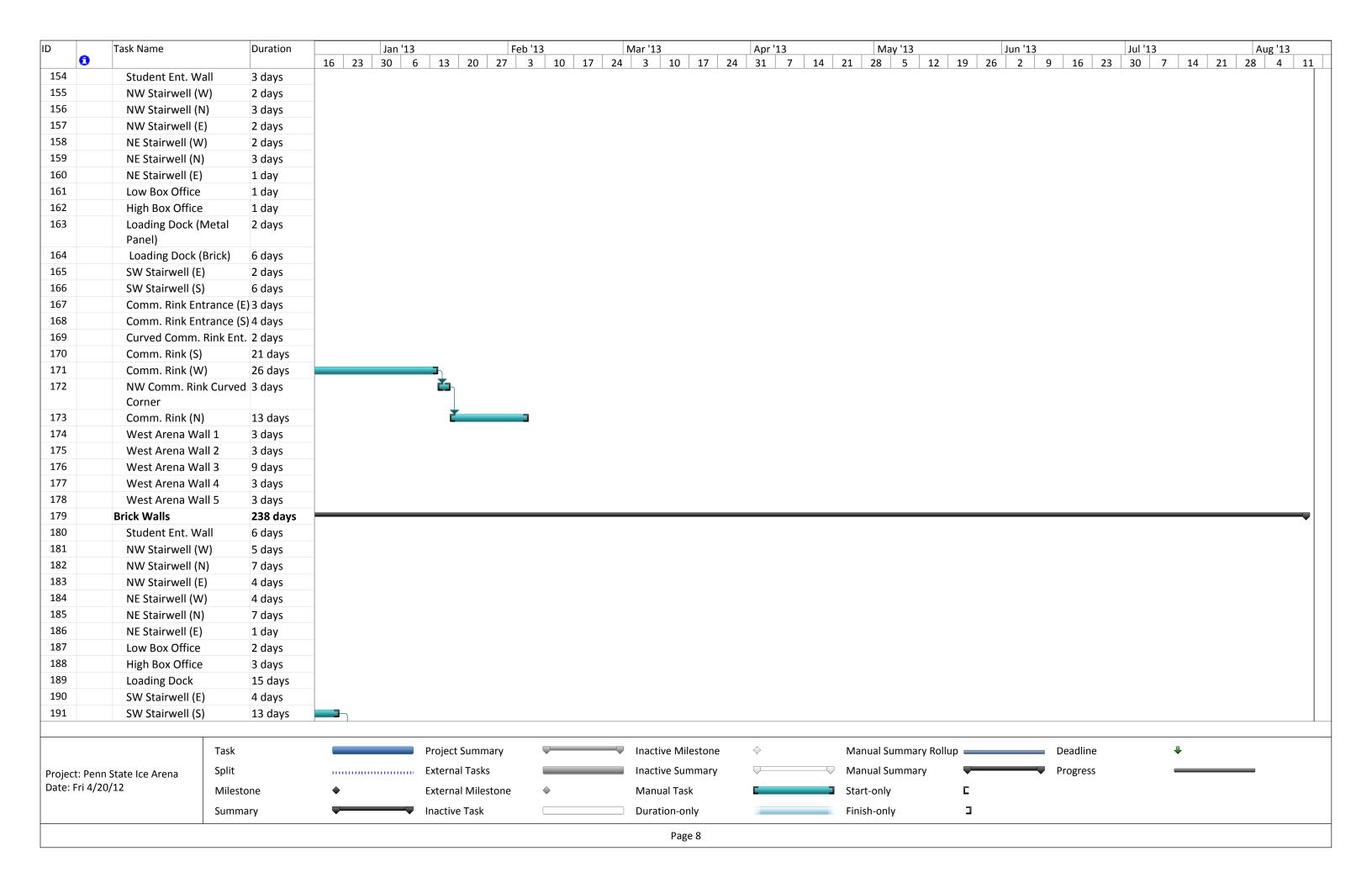

PSU Ice Hockey Arena

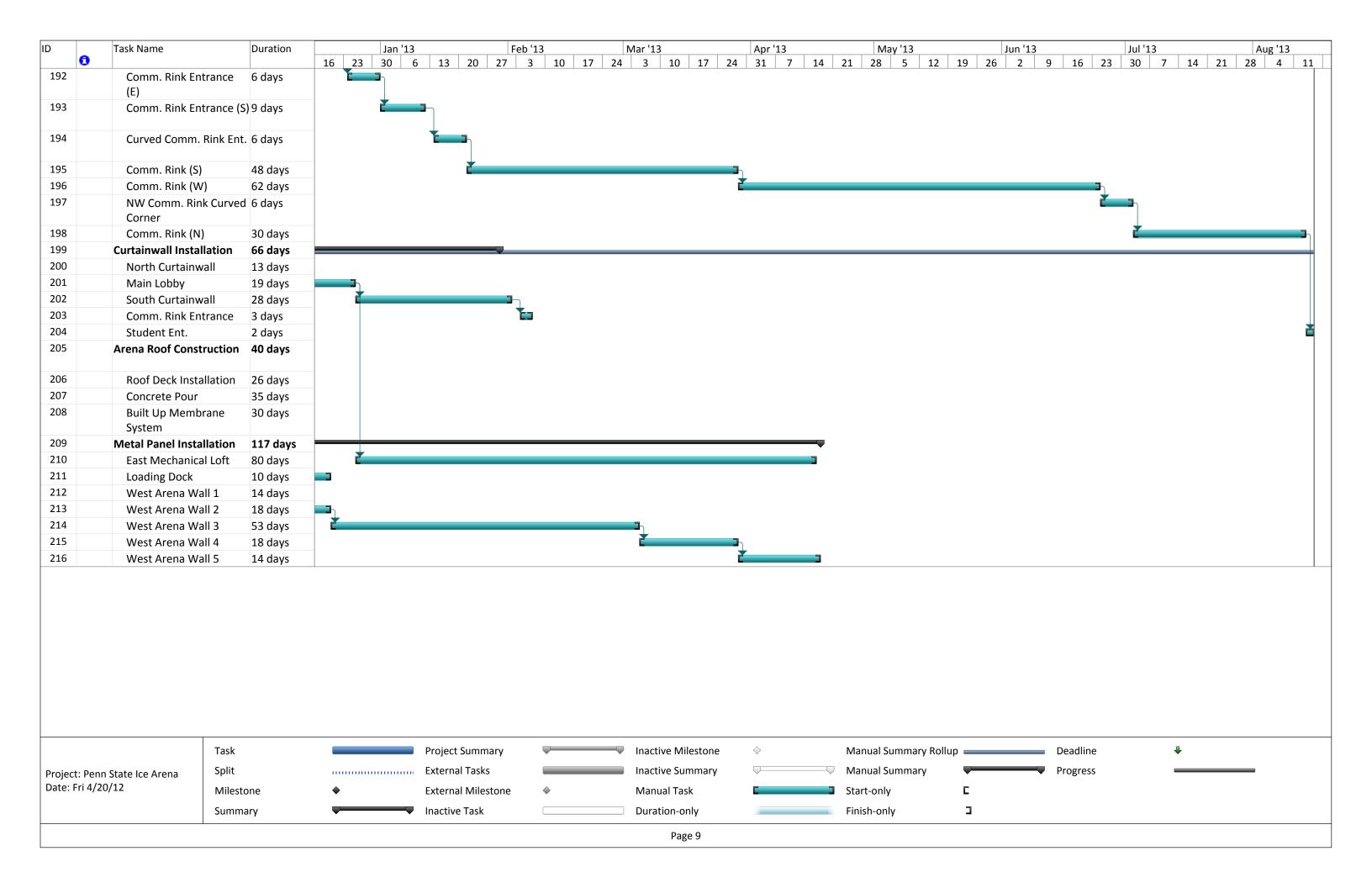

Redesign Return Ductwork Unit **Elbow** Total Unit Duct Length # Ρ SF Diameter Gauge Unit **Elbow Total Cost** Size **Elbows** Drop Weight Weight Weight Cost Cost (lbs/ft) (lbs) (lbs) (\$/lb) AHU-24x24 54.55 0.0606 438.2 26.2 24.2 \$ 7.55 \$ 169.50 \$ 5,089.58 24 10.3 682.87 AHU-48x20 81.25 0.0741 921.7 33.1 22 17.0 64.7 1510.65 \$ 7.30 \$320.00 2 \$ 10,723.13 2 AHU-50x36 77.85 9 0.0589 1319.79 46.2 22 21.5 88.4 2469.38 \$ 7.30 \$625.00 \$ 17,843.56 6 **BOWL** 72x30 217.07 3740.36 49.6 20 29.6 160 7385.27 \$ 6.85 \$ 50,013.11 6 \$ 1,000.00 \$ 99,526.90 Return Total Cost:

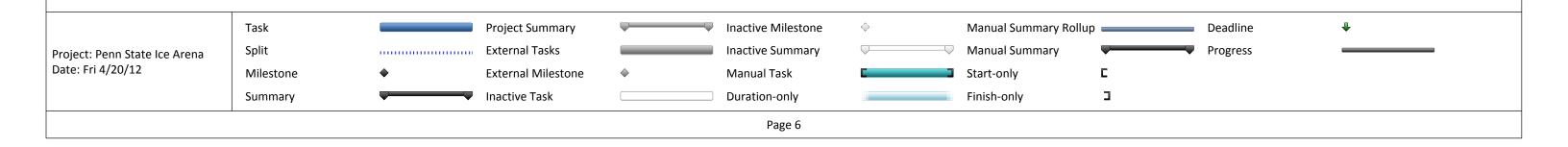

BIM Thesis Final Report


PSU Ice Hockey Arena


Redesign Supply Ductwork Duct Length # Ρ SF Diameter Gauge Unit **Elbow** Total Unit **Elbow Cost Total Cost Elbows** Weight Weight Weight Cost Drop Size (lbs/ft) (lbs) (lbs) (\$/lb) 0.0281 AHU-1 26x26 37.5 5 327.68 28.4 11.2 28.7 563.50 \$ 7.85 \$ 218.65 \$ 4,390.25 24 AHU-2 34x20 15.5 0.0116 139.23 28.3 37.2 254.20 \$ 7.85 \$ 278.00 \$ 1,967.43 2 24 11.6 AHU-6 66x32 63.25 0.0289 1034.36 49.4 \$ 11.40 22 24.5 144 2269.63 \$ 1,000.00 \$ 22,665.73 5 AHU-7 38x32 208.03 0.1081 2292.54 38.1 17.5 60.8 4187.73 \$11.40 \$ 440.30 \$ 45,464.69 9 22 157.7 **BOWL** 50 4 2036.06 50 22 20.6 300 4448.62 \$ 75.50 \$875.00 \$ 248,770.81 168.95 2013.97 48 19.9 \$72.00 \$850.00 3362.11 \$ 242,071.56 48 22 220.02 40 2248.66 40 24 13.6 2992.27 \$60.50 \$800.00 \$ 181,032.46 Supply \$ 771,291.39 Total Cost:







)	Task Name	Duration	Start	Finish	Jun				Jul '12				ug '12			Sep				Oct '12				v '12		_	
	0	-			27	3 :	10 17	7 24	1	8	15 22	29	5	12	19	26 2	9	16	23	30 7	14	21	28	4	_11		18
192	Comm. Rink Entrance (E)	6 days	Mon 12/24/1	2 Mon 12/31/12																							
193	Comm. Rink Entrance (S	6) 9 days	Tue 1/1/13	Fri 1/11/13																							
194	Curved Comm. Rink Ent	. 6 days	Mon 1/14/13	Mon 1/21/13																							
195	Comm. Rink (S)	48 days	Tue 1/22/13	Thu 3/28/13																							
196	Comm. Rink (W)	62 days	Fri 3/29/13	Mon 6/24/13																							
197	NW Comm. Rink Curved Corner	d 6 days	Tue 6/25/13	Tue 7/2/13																							
198	Comm. Rink (N)	30 days	Wed 7/3/13	Tue 8/13/13																							
199	Curtainwall Installation	66 days	Tue 10/30/12																				-				
200	North Curtainwall	13 days		Mon 11/19/12																							
201	Main Lobby	19 days		Tue 12/25/12																							
202	South Curtainwall	28 days	Wed 12/26/12																								
203	Comm. Rink Entrance	3 days	Mon 2/4/13	Wed 2/6/13																							
204	Student Ent.	2 days	Wed 8/14/13	Thu 8/15/13																							
205	Arena Roof Construction	40 days	Fri 10/19/12	Thu 12/13/12																	•						
206	Roof Deck Installation	26 days	Fri 10/19/12	Fri 11/23/12																	راً ا						
207	Concrete Pour	35 days	Wed 10/24/12	2 Tue 12/11/12																							
208	Built Up Membrane System	30 days	Fri 11/2/12	Thu 12/13/12																							
209	Metal Panel Installation	117 days	Tue 11/6/12	Wed 4/17/13																			ı		_	_	
210	East Mechanical Loft	80 days	Wed 12/26/12	2 Tue 4/16/13																							
211	Loading Dock	10 days	Thu 12/6/12	Wed 12/19/12																							
212	West Arena Wall 1	14 days	Tue 11/6/12	Fri 11/23/12																			`				
213	West Arena Wall 2	18 days	Mon 11/26/12	2 Wed 12/19/12																							
214	West Arena Wall 3	53 days	Thu 12/20/12	Mon 3/4/13																							
215	West Arena Wall 4	18 days	Tue 3/5/13	Thu 3/28/13																							
216	West Arena Wall 5	14 days	Fri 3/29/13	Wed 4/17/13																							

Appendix S. Construction References

Bigge Equipment Co. *Grove TMS 900E*. Manitowac: Bigge Equipment, 2008. *Bigge.com*. Bigge Equipment Co. Web. 1 Apr. 2012. http://www.bigge.com/crane-charts/truck-crane-charts/Grove-TMS9000E.pdf>.

Document: Specification brochure for the TMS 900E crane.

Bigge Equipment Co. *Grove RT760*. Shady Grove: Bigge Equipment. *Bigge.com*. Bigge Equipment Co. Web. 1 Apr. 2012. http://www.bigge.com/crane-charts/rough-terrain-crane-charts/Grove-RT760_NA_Brochure.pdf>.

Document: Specification brochure for the RT 760 crane.

Seidel, Michael. "Construction of Tensile Surface Structures." *Tensile Surface Structures: A Practical Guide to Cable and Membrane Construction*. Berlin: Ernst & Sohn, 2009. 85-196. Print.

Book: Guidelines for the erection sequence of the cable stay roof system.

Thomson, James A. "Ducting Systems." *National Plumbing & HVAC Estimator 2012*. Carlsbad, CA: Craftsman Book, 2011. 339-96. Print.

Book: Cost data for mechanical duct estimates.

Hodge, Gene. "Meeting with Mortenson." Personal interview. 20 Mar. 2012.

Interview: meeting with Gene Hodge, Senior Project Manager for Mortenson Construction on the Penn State Ice Arena project.

Lsfiore.com. Fiore Brothers, Inc., 2009. Web. 1 Apr. 2012.

http://www.lsfiore.com/Fiore_Brothers_Leasing_Company.htm?gclid=COmB3Mf5lK8CFUMTNAodYFJr0O.

Website: Rental rates for the RT 760 crane and 80' man-lift.

Secules, Tom. "Cable Cost Estimates." E-mail interview. 3 Apr. 2012.

Interview: Coordination with Tom Secules of Wirerope Works to determine cost for the proposed cable system design.